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ABSTRACT

During the last two decades, the predominant view of the microbial inhabitants of
the mammalian digestive system has evolved from passive commensals to important
drivers of health and disease. Processes now known to be affected by the gut mi-
crobiome include digestion, immune development and regulation, drug metabolism,
pathogen resistance, and many more. Discoveries like these have been driven by rev-
olutionary new methods for the untargeted, high-throughput characterization of the
genetic and metabolic composition of microbial communities. However, going from
these high-dimensional observations to mechanistic understanding is not trivial and is
limited by experimental challenges in studying complex communities in realistic envi-
ronments. The gut microbiome is particularly difficult, given its taxonomic diversity,
physical inaccessibility, and intimate interface with host physiology. In this disserta-
tion, I describe several contributions to our understanding of this important ecological
system, with a particular focus on the analysis of bacteria and their metabolic roles
in situ through the integration of diverse data.

The drug acarbose inhibits the breakdown and absorption of starch in the upper
digestive system, resulting in increased availability of this polysaccharide in the lower
gut. Interestingly, acarbose has been shown in mice to substantially increase lifespan.
This work explores the effects in mice of experimental treatment with acarbose on the
composition and function of the gut microbiome. Resulting dramatic increases in the
abundance of members of the largely uncultivated bacterial family Muribaculaceae
are linked to higher concentrations in feces of several short-chain fatty acids—in
particular propionate—and these metabolic products of bacterial fermentation are

in turn found to be associated with increased mouse lifespan. Furthermore, based
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on the culture-free reconstruction of bacterial genomes, we propose a metabolic role
of Muribaculaceae in the breakdown of starch. Genetic features with homology to
the starch utilization system in Bacteroides are identified in specific members of this
family, possibly explaining their increased abundance in acarbose treated mice. In
addition, for one taxon, two distinct genomic variants are found, predicting differences
in physiology that could explain variable response to acarbose across replications of
the experiment at multiple study sites. Finally, I develop experimental and analysis
methods for measurements of absolute abundance in microbial communities using a
recently proposed spike-in quantification approach. A novel, model-based inference
procedure harnessing these data is found to outperform other methods in identifying
changes in bacterial abundance.

This dissertation presents a comprehensive exploration of the dynamics and im-
portance of the gut microbiome in an experimental model with implications for human
health. Simultaneously, we develop and refine methods that can be applied to a vari-

ety of systems for deriving new understanding about complex microbial communities.
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CHAPTER 1

Introduction

The importance of bacterial symbionts in human health and disease is increasingly
recognized [1]. Bacteria in the lower gut are now known to play a major role in numer-
ous processes, including digestion [2-4], immune development and regulation [5, 6],
drug metabolism [7], pathogen resistance [8], and many more. Given its eminent
importance, this microbial system is now referred to as the gut microbiome, and has
been described as a “forgotten organ” [9]. These discoveries have in many ways been
driven by revolutionary new methods for the untargeted, high-throughput descrip-
tion of the taxonomic, DNA, RNA, protein, and metabolite composition of microbial
communities, characterizations which are referred to as metagenomics [10, 11], meta-
transcriptomics [12], metaproteomics [13], and metabolomics [14].

These “meta-omics” and other modern tools have enabled studies of diverse and
ecologically complex bacterial communities. Perhaps the most widely applied of these
methods is the 16S rRNA gene survey developed by Norman Pace [15, 16], harnessing
the molecular taxonomy made possible by Carl Woese [17]. Using this method, a
diversity of bacterial taxa can be simultaneously counted and tracked, despite an
inability to cultivate many of these in the lab [18]. The introduction and optimization
of this approach has democratized microbial ecology and resulted in an explosion of
such studies in previously unconsidered fields, including autoimmune disease [19],
obesity [20], autism [21], and longevity [22]. As a result, myriad associations between
microbiome composition and various features of host physiology have been described.

However, progress in understanding the mechanistic basis for these associations
has not kept pace; demonstrating a causal role of the gut microbiome requires ex-
tensive follow-up experimentation. When the relevant bacterial cultivars are not
available, one popular approach is the transfer of whole gut communities between
animals to identify physiological features that are also transmitted [23]. This method

has resulted in perhaps the most important therapy to emerge from the nascent field,



fecal microbiome transplantation, which has demonstrated efficacy as a treatment for
Clostridium difficile infection [24]. Unfortunately, transplantation and other exper-
imental manipulations are often not feasible, especially in studies of human health,
or are not precise enough tools to refine mechanistic understanding. In addition,
findings in mouse model systems frequently do not translate to humans [25], in part
because of important differences in the microbial communities associated with each
host. What’s more, microbial community composition can be highly variable between
individuals, and given the potential importance of community context on outcomes,
this may greatly limit inferences. As a result, deriving actionable insights from studies
of the gut microbiome remains a major challenge.

The present dissertation is based on the premise that improved analyses will more
efficiently and accurately derive inference from observation, and will facilitate top-
down study of the mammalian gut microbiome in vivo, in order to better understand
its ecology and role in host health. New methods for the analysis of microbial com-
munity data have the potential to expand the impact of modern tools by combining
multiple data types, like taxonomic surveys, metagenomic sequence, and metabolite
concentrations, and can enable new insights into the biology of microbial communities
when manipulations are infeasible and model organisms are insufficient. In addition,
by complementing improved analyses with experimental perturbations, we may gain
greater understanding of the gut microbiome.

Chapter 2 characterizes the impact of the anti-diabetic drug acarbose on the
composition of the mouse gut bacterial community and its fermentation products.
It explores the possibility that the increased production by gut bacteria of short-
chain fatty acids in treated mice results in extended lifespan, potentially explaining
the observation of longevity enhancement with the drug [26]. Chapter 3 expands
on this with an analysis of 8 reconstructed genomes from members of this bacterial
community, all in the largely uncultured family Muribaculaceae [27]. By comparing
the functional potential of taxa that respond positively to acarbose treatment to those
that do not, the ecological niche of this clade is better defined. In Chapter 4 a recently
developed extension to the marker gene survey is discussed. Spike-in quantification
has the potential to democratize the measurement of absolute abundance in bacterial
communities, much as the 16S rRNA gene survey did originally for relative abundance.
This chapter presents an overview and suggests several best practices for the approach.
In Chapter 5, a statistical model for spike-in quantification data is presented and
applied to both simulated and real data. This chapter presents a foundation for

future extensions to the model, which can leverage spike-in experiments for improved



ecological inference.

This dissertation presents a comprehensive approach to the analysis of microbial

community data that can be applied across systems. The current deluge of meta-

omics data has the potential to revolutionize the field when combined with carefully

designed experimentation and core knowledge about the physiology and ecology of

bacteria. The work described here builds on recent advances in microbial ecology,

and contributes both new tools and new biological understanding.
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CHAPTER 2

Changes in the gut microbiota and
fermentation products associated with
enhanced longevity in acarbose-treated

mice.

A wversion of this chapter has been submitted for publication and has been made

available online as [1]

Abstract

Background Treatment with the a-glucosidase inhibitor acarbose increases median
lifespan by approximately 20% in male mice and 5% in females. This longevity ex-
tension differs from dietary restriction based on a number of features, including the
relatively small effects on weight and the sex-specificity of the lifespan effect. By
inhibiting host digestion, acarbose increases the flux of starch to the lower digestive
system, resulting in changes to the gut microbiota and their fermentation products.
Given the documented health benefits of short-chain fatty acids (SCFAs), the domi-
nant products of starch fermentation by gut bacteria, this secondary effect of acarbose
could contribute to increased longevity in mice. To explore this hypothesis, we com-
pared the fecal microbiome of mice treated with acarbose to control mice at three

independent study sites.

Results Microbial communities and the concentrations of SCFAs in the feces of
mice treated with acarbose were notably different from those of control mice. At all
three study sites, the bloom of a single bacterial taxon was the most obvious response

to acarbose treatment. The blooming populations were classified to the largely uncul-



tured Bacteroidales family Muribaculaceae and were the same taxonomic unit at two
of the three sites. Total SCFA concentrations in feces were increased in treated mice,
with increased butyrate and propionate in particular. Across all samples, Muribacu-
laceae abundance was strongly correlated with propionate and community composi-
tion was an important predictor of SCFA concentrations. Cox proportional hazards
regression showed that the fecal concentrations of acetate, butyrate, and propionate
were, together, predictive of mouse longevity even while controlling for sex, site, and

acarbose.

Conclusion We have demonstrated a correlation between fecal SCFAs and lifespan
in mice, suggesting a role of the gut microbiota in the longevity-enhancing proper-
ties of acarbose. Treatment modulated the taxonomic composition and fermentation
products of the gut microbiome, while the site-dependence of the microbiota illus-
trates the challenges facing reproducibility and interpretation in microbiome studies.
These results motivate future studies exploring manipulation of the gut microbial
community and its fermentation products for increased longevity, and to test a causal

role of SCFAs in the observed effects of acarbose.

2.1 Background

The Interventions Testing Program (ITP) is a long-running, well-powered study of
longevity enhancing interventions in genetically heterogeneous mice with identical
protocols replicated at each of three study sites [2]. The drug acarbose (ACA) has
been reproducibly shown in that study to increase mouse median lifespan with a larger
effect in males than females [3, 4]. The largest increase was found when treatment
began at 4 months, 22% in males and 5% in females [3], but the beneficial effect
was still detectable in mice receiving ACA starting at 16 months [4]. The 90th
percentile lifespan, a surrogate for maximum lifespan also shows benefits of ACA,
with similar magnitudes in both male and female mice [3]. ACA is a competitive
inhibitor of a-glucosidase and a-amylase, resulting in delayed intestinal breakdown of
starch when taken with food and reduced postprandial increases in blood glucose. For
these reasons, ACA is prescribed for the treatment of type 2 diabetes mellitus [5], and
has also been shown to reduce the risk of cardiovascular disease in that population [6].

It is unclear whether the pathways by which ACA extends longevity in mice over-
lap with those affected by dietary restriction, but several observations have suggested

critical differences [3]. Weight loss in ACA mice was more dramatic in females than



in males, while the longevity effect is much stronger in males. By contrast, dietary
restriction affects both weight and lifespan similarly in both sexes. Likewise, the re-
sponse of fasting hormone FGF21 to ACA treatment was opposite in direction from
that induced by dietary restriction. In female mice alone, ACA blocked age-related
changes in spontaneous physical activity, while dietary restriction leads to dramatic
increases in activity in both sexes. It is therefore justified to suspect that the effects
of ACA on longevity are due to pathways distinct from dietary restriction.

Besides reducing the absorption of glucose from starch, inhibition of host enzymes
by ACA results in increased flow of polysaccharide substrate to the lower digestive
system [7]. ACA has been shown to raise the concentration of starch in stool [7, 8],
and the observed increased excretion of hydrogen in breath [9-13] demonstrates that
at least some of this substrate is fermented by the gut microbiota. The major byprod-
ucts of polysaccharide fermentation in the gut are hydrogen, CO,, and short-chain
fatty acids (SCFAs), in particular acetate, butyrate, and propionate. Unsurprisingly,
ACA treatment has been observed to increase acetate concentrations in human fe-
ces [14] and serum [15], as well as concentrations in portal blood and total amounts
in rodent cecal contents [7]. Likewise, in some studies, ACA increased butyrate con-
centrations in human feces [8, 13, 16] and serum [15]. ACA also increased propionate
concentrations in rat portal blood and total amount in cecal contents [7], as well as
total output in feces in humans [14]. These changes were presumably due to changes
in the activity and composition of microbial fermenters in the lower gut. Indeed,
ACA was found to modulate the composition of the fecal bacterial community in
prediabetic humans [17], and both increase the SCFA production potential inferred
from metagenomes and lower fecal pH [18].

Impacts of ACA on microbial fermentation products are of particular interest be-
cause SCFAs produced in the gut are known to affect host physiology, with a variety
of health effects associated with butyrate, propionate, and acetate (reviewed in [19]
and [20]). Although butyrate and propionate are primarily consumed by the gut ep-
ithelium and liver, respectively, they are nonetheless detectable in peripheral blood,
and acetate can circulate at substantially higher concentrations [21]. Four G-protein
coupled receptors have been shown to respond to SCFAs with varying levels of speci-
ficity: FFAR2, FFAR3, HCA2, and OLFR78. All except OLFR78 are expressed in
colonic epithelial cells, and each is expressed in a variety of other tissues through-
out the body. Similarly, both butyrate and propionate act as histone deacetylase
inhibitors which could have broad effects on gene expression through modulation of

chromatin structure. In total, these pathways contribute to regulation of cellular



proliferation, inflammation, and energy homeostasis, among other processes. The ef-
fects of ACA on fermentation products in the gut may, therefore, modulate its overall
effects on host physiology.

Despite theoretical expectations and suggestive empirical results in other animal
models, no study has looked for direct evidence that some of the longevity enhancing
effects of ACA in mice are mediated by the gut microbiota and the SCFAs produced
during fermentation. Here we test four predictions of that hypothesis: (1) ACA
reproducibly modulates bacterial community composition; (2) the concentrations of
SCFAs are increased in ACA-treated mice; (3) community structure is correlated
with SCFAs and other metabolites in both control and treated mice; and (4) SCFA
concentrations are predictive of lifespan. Fecal samples were analyzed from control

and ACA treated mice enrolled in the ITP protocol at three, independent study sites.

2.2 Results

2.2.1 Study population

Sampled mice are representative of an underlying study population that recapitulates
the previously observed sex-specific longevity effects of ACA. Across all three sites,
ACA increased the median male survival of the underlying study population by 17%
from 830 to 975 days (log-rank test P < 0.001). Female median survival increased
5% from 889 to 931 days (P = 0.003). These results are consistent with the increased
longevity due to ACA previously reported [3]. Fecal samples from 48 mice at each
of three study sites—The Jackson Laboratory (TJL), the University of Michigan
(UM), and the University of Texas Health Science Center at San Antonio (UT)—
were collected between 762 and 973 days of age with a balanced factorial design over
sex and treatment group. Visual inspection of the overall survival curves (Figure 2.1)
confirmed that the longevity of mice sampled for microbiome analyses at UM and
UT was representative of the other, surviving, unsampled mice. Samples from TJL
were not matched to individual mice and longevity measures are not available for the

subset described here.

2.2.2 Differences in fecal community in ACA-treated mice

ACA-treated mice had a substantially different microbial community composition
from control mice at all three study sites. In a multivariate analysis of variance on

site, sex, and treatment using Bray-Curtis dissimilarities and including all two-way
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Figure 2.1: Survival curves for mice treated with acarbose or controls. Fraction of
mice surviving on the control diet (blue lines) or mice fed the same diet containing
ACA (gold) at each of three sites: TJL, UM, and UT. Median longevity for each
group of mice is indicated by a dashed vertical line. Black circles indicate the age at
death for each of the sampled mice at UM and UT.

interactions, significant effects were found for treatment (partial r? = 9.6%, PER-
MANOVA P < 0.001) and site (partial r* = 16.4%, P < 0.001), as well as their
interaction (partial r* = 3.4%, P < 0.001). These statistical results reflect the sepa-
ration apparent in a principal coordinates ordination (see Figure 2.2). A much smaller
but still significant effect of sex (partial r? = 1.0%, P = 0.014) was also identified,
but there was no interaction between sex and treatment (P = 0.344). Despite the
unbalanced design, significance of the PERMANOVA was not affected by changing
the order of predictors. Based on a test of multivariate homogeneity of variances,
dispersion differed between sites (PERMDISP P < 0.001) and sexes (P = 0.023),
which may bias the PERMANOVA results, but did not differ between treatments
(P = 0.425). The small effect of sex and the lack of significant interaction effects
with treatment suggest that community composition itself, at the level of overall di-
versity, is not directly responsible for differential effects of ACA on longevity in male
and female mice. However, the substantial differences in community composition due
to treatment, while not surprising, suggests that the effects of ACA on the microbiome
have the potential to modulate host health.

The fecal bacterial community in control mice was dominated by a handful of

bacterial families (see Table 2.1 for details). Across control mice at all three sites,
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Figure 2.2: Fecal bacterial community composition in sampled mice. The two dom-
inant principal coordinates, based on Bray-Curtis dissimilarities among community
profiles, are plotted, and percent of variation explained by each is indicated in paren-
theses on the axes. The location of points in each panel is identical. Markers denote
whether mice were treated (triangles) or controls (circles). In (A) points are colored
by treatment: control mice (blue) and ACA-treated (gold), in (B) points are colored
by site: TJL (pink), UM (blue), and UT (green), and in (C) points are colored by
sex: male (light blue) and female (pink).

a median of 30% of sequences were classified as members of the largely uncultured
family Muribaculaceae—historically called the S247—belonging to the phylum Bac-
teroidetes. Other abundant families included the Lachnospiraceae (27%), Ruminococ-
caceae (14%), Lactobacillaceae (9%), and Erysipelotrichaceae (1%), all of which are
classified in the phylum Firmicutes. More than 99.99% of sequences across all mice
were classified at or below the family level.

At a 97% sequence similarity cutoff, 271 operational taxonomic units (OTUs) had
a mean relative abundance across all samples of greater than 0.01% and an incidence
of greater than 5%. Of these, the relative abundance of 113 OTUs differed between
treated and control mice, correcting for a false discovery rate (FDR) of 5%. Together,
these OTUs account for a median relative abundance of 54% across both control and
treated mice. OTUs differing between sexes or reflecting an interaction between sex
and treatment were a substantially less abundant. 5 OTUs were identified after FDR
correction that differed significantly in relative abundance between male and female
mice, accounting for a median, summed relative abundance of 6%. 7 OTUs were
found to be subject to an interaction between treatment and sex, with a median
relative abundances of 2%.

Differences between control and ACA mice at TJL and UM were dominated by the
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increased abundance of a single OTU, OTU-1, which had a median relative abundance
of 7.7% in control mice compared to 28.8% in ACA mice at TJL (Mann-Whitney U
test P < 0.001), and 10.4% compared to 39.0% at UM (P < 0.001) (see Figure 2.3).
At UT, OTU-1 was higher in ACA-treated mice—a median of 5.4% and 11.0% in
control and treated mice, respectively—but this increase was not statistically signifi-
cant (P = 0.344). Instead, a different OTU, designated OTU-4, was strongly affected
by ACA treatment at UT, with a median relative abundance of 6.3% in control mice
that increased to 25.6% in ACA-treated mice (P = 0.007). OTU-4 was nearly absent
at TJL and UM, with only one mouse out of 95 having a relative abundance above
0.1%, compared to 39 out of 48 mice at UT. Differences in abundance between sexes
were not observed for OTU-1 at TJL or UM, but at UT results were suggestive of an
increased abundance of OTU-1 in females (P = 0.076) and an increased abundance
of OTU-4 in males (P = 0.060). Interestingly, their combined abundance did not
differ between males and females (P = 0.344) at UT. Both OTU-1 and OTU-4 were
classified as members of the Muribaculaceae, and subsequent phylogenetic analysis
confirmed this placement (Appendix A). OTU-1 and OTU-4 are approximately 90%
identical to each other and to the most closely related cultivar (DSM-28989) over the
V4 hypervariable region of the 16S rRNA gene. These OTUs are notable both for
their high abundance overall, as well as the large difference between control and ACA-
treated mice. It is surprising that OTU-4 is common and differentially abundant at
UT, while remaining rare at both of the other sites, suggesting that local community
composition modulates the effects of ACA. While OTU-1 is made up of multiple
unique sequences, the composition within the OTU does not differ substantially with
ACA treatment (see Figure 2.4).

The increased relative abundance of OTU-1 and OTU-4 in mice treated with ACA
appears to be due to greater abundance of these sequences, and is not explained solely
by a decrease in other groups. The abundance of taxa in control and treated mice
was compared based on the recovery of spiked-in standard relative to the sequence of
interest. The median combined spike-adjusted abundance of 16S rRNA gene copies
from OTU-1 and OTU-4 was 4.3 times greater per gram of feces in ACA-treated mice
compared to controls (Mann-Whitney U test P < 0.001), suggesting a corresponding
increase in population density.

While OTU-1 and OTU-4 are classified to the same family and are similarly
affected by ACA, other OTUs in the Muribaculaceae have decreased abundance in
treated mice. The combined relative abundance of all other OTUs in the family—

excluding OTU-1 and OTU-4—was 8.3% in treated mice versus 16.8% of sequences

12



OTU-1 OTU-4

80 | ** sk *
(o]
— °
x é
v60‘ m
8 ° 3 A
c A E'N
g A o °
c °
S0t ¥ (s o 4
A f
<q(, Ale Q§ Py by
]
S0yt .o §® s[8
Ko} éA e | ©
% ) L PN Alo
SRl M §
A
0t 4 t@%--n @™ 6 &
+ - -+ - -+

- + - 4+
TJL UM uT TJL um uT

Figure 2.3: Abundance of two dominant OTUs in feces of sampled mice. Relative
abundance of the 16S rRNA gene from OTU-1 and OTU-4 in ACA-treated mice
(gold) compared to controls (blue). Points in each panel correspond with samples
collected from individual mice at each of three replicate study sites. Markers indicate
the sex of the mouse: male (triangle) or female (circle). Boxes span the interquartile
range and the internal line indicates the median. (*: P < 0.05, **: P < 0.001 by
Mann-Whitney U test).

in control mice (Mann-Whitney U test P < 0.001). The median combined spike-
adjusted abundance of all other Muribaculaceae OTUs was 0.5 times the median in
control mice (P = 0.001), suggesting a decrease in the population density of these
taxa. This is consistent with competition between OTUs in this family.

Three of the five most abundant families all exhibit decreased relative abundance
in ACA treated mice (see Table 2.1). However, the large increase in abundance of
OTU-1 and OTU-4 suggests that some changes in the relative abundance of other
taxa may be the result of compositional effects, rather than decreased density. For in-
stance, although the relative abundance of Ruminococcaceae was lower in ACA-treated
mice, the spike-adjusted abundance was little changed (P = 0.327), emphasizing
the value of this complementary analysis. Conversely, decreased relative abundance
was matched by decreased spike-adjusted abundance for both the Lactobacillaceae
(P = 0.014) and the Erysipelotrichaceae (P = 0.063).

ACA-treated mice exhibited decreased fecal community diversity. The median
Chaol richness estimate was decreased from 229 in control mice to 199 in treated
mice (Mann-Whitney U test P < 0.001). The Simpson’s evenness index was also
lower in ACA mice: 0.044 versus 0.075 in controls (P < 0.001). This reduced richness
and evenness is not surprising given the much greater abundance of a single OTU in

treated mice at each site. To understand changes in diversity while controlling for
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Figure 2.4: Relative abundance of unique 16S rRNA gene sequences in two OTUs.
Stacked bars indicate the composition of sequences clustered into (A) OTU-1 and
(B) OTU-4. Colors are assigned to the top four most common sequences within each
OTU and all remaining sequences from that OTU are assigned the color gray. Stacked
bars in each position represent individual mice sampled for this study, and reflect the
relative abundance of unique sequences in that sample. Mice are grouped into sites
and then treatments, and finally ordered based on the total abundance of OTU-1.

compositional effects, we measured the effect of ACA ignoring counts for OTU-1 and
OTU-4. While Simpson’s evenness was not decreased by treatment in this fraction of
the community (P = 0.26), the Chaol richness—subsampling to equal counts after
partitioning—was (P = 0.005), suggesting that the bloom of OTU-1 and OTU-4 may

have, in fact, resulted in the local extinction of rare community members.

2.2.3 Changes in fecal metabolite concentrations

Long-term ACA treatment affects metabolite profiles, increasing concentrations of
the SCFAs in feces (see Figure 2.5). Butyrate concentrations were increased from
a median of 3.0 mmols/kg wet weight in control mice to 4.9 in ACA-treated mice
(Mann-Whitney U test P < 0.001). Propionate concentrations were also increased:
a median of 1.1 in controls compared to 2.3 with ACA (P < 0.001). Median ac-
etate concentrations were higher, 16.2 mmols/kg versus 12.9 in controls, but a Mann-
Whitney U test did not surpass the traditional P-value threshold (P = 0.073). The
summed concentrations of acetate, butyrate, and propionate was greater in ACA-

treated mice, with a median concentration of 25.4 mmols/kg versus 19.0 mmols/kg
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Table 2.1: Abundance of common bacterial families in treated and control mice

family % control® % ACA?* ACA : control®
Muribaculaceae 30.4 (21.5,43.3) 48.17 (35.3,61.8) 1.8™
Lachnospiraceae  26.6 (16.3, 41.6) 23.9" (9.6, 37.4) 1.3
Ruminococcaceae  14.2 (9.0, 19.0)  11.6° (6.9, 15.6) 1.1
Lactobacillaceae 9.5 (1.2, 17.0) 2.6" (1.0, 8.2) 0.31°
FErysipelotrichaceae 1.4 (0.3, 6.2) 0.5" (0.2, 2.2) 0.427

# Median and interquartile range of the relative abundance of the top five
most abundant bacterial families in control and ACA-treated mice

b the ratio of median spike-adjusted abundances in ACA-treated mice
versus control mice

f P < 0.1 via Mann Whitney U test

" P<0.05

" P <0.001

in control mice (P = 0.003). This confirms our predictions given the expectation of
greater availability of polysaccharide substrate for fermentation. Indeed, median glu-
cose concentration was also increased from 5.3 to 10.3 (P < 0.001). Concentrations
of formate, valerate, isobutyrate, and isovalerate were generally below the detection
limit. Fresh pellet weight was increased from a median of 36 to 74 mg (P < 0.001)
Fecal starch content was not measured, but pellets from ACA-treated mice had a
noticeably chalky appearance.

Butyrate as a molar percentage of total SCFA was modestly greater in the ACA
mice, a median of 19% in control mice was increased to 22% in treated mice (Mann-
Whitney U test P < 0.001), as was propionate: 7% in control, 10% in treated
(P = 0.006), while acetate was decreased from 73% in controls to 66% in treated
mice (P < 0.001).

In contrast to the three measured SCFAs and glucose, both succinate and lactate
concentrations were decreased. Median lactate was decreased from 3.2 mmols/kg in
control mice to 1.3 in ACA-treated mice (P = 0.003), and succinate from 3.0 to 1.6
(P < 0.001). It is surprising that these fermentation intermediates are reduced, given
the expected increase in available polysaccharide. It is possible that their concentra-
tions reflect greater consumption in downstream pathways, or perhaps ACA directly
inhibits the metabolism and growth of relevant bacteria; such effects have been pre-
viously reported for in vitro fermentations of starch with human fecal slurries [8].

Differences in SCFAs between sexes are particularly interesting given the greater
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Figure 2.5: Concentrations of metabolites in feces of sampled mice. Feces were
obtained from mice fed either the control diet (blue) or the same diet supplemented
with ACA (gold). Boxes span the interquartile range and the internal line indicates
the median. The shaded region highlights the three major SCFAs produced by micro-
bial fermentation of polysaccharides in the gut, and the sum of their concentrations
is plotted as “total SCFA”. Above 0.1 mmols/g, concentrations are plotted logarith-
mically. ({: P < 0.1, *: P <0.05, **: P < 0.001 by Mann-Whitney U test).

longevity effects of ACA in male mice. For propionate, a sex-by-treatment interac-
tion was found (ANOVA P = 0.023), but butyrate and acetate had no such effect.
This interaction results in a larger difference in propionate concentrations for male
mice (from 1.4 mmols/kg in control to 2.7 in ACA) than for female mice (from 1.0
to 1.9) with ACA treatment. The significance of the interaction term was not cor-
rected for multiple testing, and therefore additional studies would greatly increase

our confidence in this result.

2.2.4 Community predictors of fecal SCFA concentrations

Community composition was correlated with metabolite concentrations in both con-
trol and ACA-treated mice. Numerous strong correlations were detected between the
spike-adjusted abundance of 16S rRNA copies from the most common bacterial fam-
ilies and the concentrations of SCFAs and lactate. Notably, Muribaculaceae abun-
dance was particularly strongly correlated with propionate concentrations in both
control (Spearman’s p = 0.36, P = 0.002; see Figure 2.6) and ACA mice (p = 0.64,
P < 0.001). Likewise, Lachnospiraceae were correlated with butyrate (p = 0.61 in
control and 0.77 in ACA, P < 0.001 for both), and Lactobacillaceae with lactate
concentrations (p = 0.63 in control and 0.67 in ACA, P < 0.001 for both). Strik-
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ingly, concentrations of acetate and butyrate were especially correlated with each
other (p = 0.67 in control and 0.80 in ACA, P < 0.001 for both). Although our
study was not an unambiguous test, these results support the hypothesis that the
fecal metabolite response to treatment is dependent on the population density of rel-
evant microbes in the gut community. Similarly, environmental and host factors that
promote or inhibit the growth of particular community members would be expected

to modulate the response.
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Figure 2.6: Correlations between abundances of taxa and metabolites in feces.
Correlations are illustrated among metabolite concentrations in feces and family level,
summed spike-adjusted 16S rRNA gene abundances. Points correspond with samples
collected from individual mice and colors indicate whether they were obtained from
mice fed the control diet (blue) or the same diet supplemented with ACA (gold).
Markers indicate the sex of the mouse: male (triangle) or female (circle). Metabolite
concentrations are reported normalized to feces wet weight, and abundances are in
spike-equivalent units. Values are on a linear scale between 0 and the subsequent tick
label, above which, points are plotted logarithmically.

To identify key players in these associations, we examined the relationship be-
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tween metabolite concentrations and the spike-adjusted abundances of OTUs. Based
on a LASSO regression, the abundances of a number of OTUs can be used to predict
concentrations of propionate, butyrate, acetate, and lactate even after accounting
for treatment, sex, and study site. Consistent with the correlations found between
Muribaculaceae abundance and propionate, OTU-1 and OTU-4 were identified as pre-
dictors of increased propionate, along with a third taxon, OTU-5, also classified as a
member of the family. For both butyrate and acetate, OTUs classified as members
of both the Lachnospiraceae and Ruminococcaceae were most predictive of increased
concentrations. Unsurprisingly, the most abundant OTU classified as a member of
the Lactobacillaceae, OTU-2, was found to be highly predictive of increased lactate.
However, 8 OTUs were also associated with decreased lactate concentrations, most
of which were among those associated with increased butyrate and acetate. Among
other explanations, this is consistent with these taxa either being inhibited by lactate
or being lactate utilizers, which are likely to be producing SCFAs as secondary fer-
mentation products. Overall, results were both consistent with a priori expectations,
and useful for generating hypotheses about which taxa might be associated with the

generation of fermentation products.

2.2.5 Fecal SCFA concentrations as predictors of longevity

Given the documented health benefits of SCFAs in the gut (reviewed in [19]) and their
increased levels in ACA-treated mice, we tested the relationship between the acetate,
butyrate, and propionate concentrations in feces, and the lifespan of individual mice.
Lifespans of fecal donors were not available for mice at TJL, so survival analyses were
carried out only with UM and UT mice, and effect sizes are reported for SCFAs as
standardized hazard ratios (HRs). Due to the reduced number of mice sampled for
this study, data were pooled across sexes and sites. The shared effects of the design
parameters—treatment, sex, and study site—on both SCFAs and longevity, were ac-
counted for by including terms for these covariates as well as their two and three-way
interactions. Analyses reinforcing our interpretations are discussed in Appendix B.
Tested individually against this null model, an association between longevity and
propionate was found (standardized HR of 0.727, P = 0.031), but no relationship
was found with butyrate (P = 0.240) or acetate (P = 0.742). However, when the
model was fit with all three SCFAs simultaneously, each was found to be associ-
ated with longevity (P = 0.012, 0.030, 0.042 for propionate, butyrate, and acetate,

respectively). Coefficients for SCFA covariates in this full model suggest a positive as-
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sociation with longevity for both propionate and butyrate (standardized HR of 0.674
and 0.586, respectively). Interestingly, a negative association was found with acetate
(standardized HR of 1.576) using this model. The discrepancy between this result
and the lack of association when butyrate and acetate are each tested alone likely
reflects the strong positive correlation between acetate and butyrate concentrations,
masking their individual, opposing associations with longevity. The overall fit of the
full model was improved compared to the null model with only design covariates
(likelihood ratio test, P = 0.023).

2.3 Discussion

ACA, by inhibiting the enzymes responsible for starch degradation in the small in-
testine, is expected to increase the availability of this polysaccharide to the micro-
biome. The resulting increase in SCFA production may contribute to the effects
of ACA on health. Despite previous observations in humans and rats that ACA
results in substantial changes to the community structure [8, 17] and fermentation
products [7, 8, 13, 16] of the gut microbiota, a link between these effects on the mi-
crobiome and longevity has not been established. Here we present the first study
to combine bacterial community surveys with measurement of fecal metabolites in
ACA treated mice, as well as the first to pair these data with lifespan, allowing us to
explore the role of the microbiome in increased longevity.

Our results confirm all four predictions that we set out to test: ACA was found
to affect both (1) the composition of bacterial communities and (2) SCFAs in mouse
feces, (3) the abundances of individual taxonomic groups were associated with con-
centrations of fermentation products, and (4) the concentrations of fecal SCFAs were
associated with variation in mouse longevity.

While it is unsurprising that an increased flux of starch to the large intestine
affected the gut microbiota and their fermentation products, some changes were es-
pecially pronounced. The increased relative abundance in ACA-treated mice of the
dominant OTU—QOTU-1 at UM and TJL and OTU-4 at UT—was dramatic: one or
the other was increased approximately 4-fold at all three sites and in multiple samples
more than half of sequences belonged to these OTUs. A cursory BLAST search re-
veals that sequences identical to OTU-1 have been previously recovered in published
studies ([e.g. 22, 23]); in [24] the sequence was found at high relative abundance in the
brains of mice that had undergone sepsis. It was notable that OTU-1 did not respond
to ACA at UT, while its increased abundance was so striking at UM and TJL. Our
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results appear to constrain the potential explanations for this observation. OTU-1
was present and abundant at all three sites; the abundance in control mice was lowest
at UT, although the median there was still greater than 5%. While it is not possible
with the data presented here to rule out genomic differences of OTU-1 among sites,
a similar composition of unique 16S rRNA gene sequences made up this cluster at all
three. On the other hand, OTU-4 was at very low abundance, with no reads in a ma-
jority of samples, at UM and TJL where OTU-1 did respond to ACA. These results
suggest that both OTUs respond to ACA in the same way, with OTU-4, when it is
sufficiently abundant, inhibiting the response of OTU-1, potentially through resource
competition. Both OTUs are in the same family, the Muribaculaceae, but are not
the same species or genus by the traditional similarity thresholds, sharing only 90%
identity over the sequenced fragment. The differential response of these OTUs among
sites illustrates the importance of each site’s local “metacommunity” in determining
the microbial community’s response to environmental perturbations.

Pronounced differences in the resident microbial communities of different hosts
may contribute to challenges in translating results from mice and other model organ-
isms to humans. A comparison of bacterial community composition in feces in predia-
betic people before and during a 4-week ACA treatment period did not reveal changes
of the magnitude reported here [17], although this may reflect the limited duration
of treatment. Interestingly, in that study Lactobacillaceae abundance increased with
ACA, while we observed this family to be depleted in treated mice. The abundance of
the Muribaculaceae was not reported. Although members of this family are common
in mice and have been previously shown to respond to diet, the clade is substantially
less abundant in most human samples [25]. However, the prevalence of Muribaculaceae
may be under-reported in the literature, as the Ribosomal Database Project [26] does
not include the family and classification using this database assigns sequences to the
Porphyromonadaceae instead [27]. Historically, two other names have also been used
for this clade: the “S247” (from an early environmental clone [28]), and “ Candidatus
Homeothermaceae” (proposed in [25]). While the isolation of one Muribaculaceae cul-
tivar has recently been published, Muribaculum intestinale YL27 [29], and as of this
writing several draft genomes are available for unpublished isolates (e.g. see whole
genome shotgun sequencing projects NWBJ00000000.1 and NZ NFIX00000000.1),
additional cultivars will be vital for understanding the function and ecology of the
family. Nonetheless, genomes assembled from metagenomes suggest that populations
of Muribaculaceae are equipped with fermentation pathways to produce succinate,

acetate, and propionate, and that the family is composed of metabolic guilds, each
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specializing on the degradation of particular types of polysaccharides: plant glycans,
host glycans, and o-glucans [25]. This suggests that the Muribaculaceae may occupy a
similar set of niches in mice as do Bacteroides species in humans. The Muribaculaceae
and Bacteroides are both in the order Bacteroidales. Bacteroides also specialize in the
fermentation of polysaccharides [30], and at least some of the most common species
in the human gut are known to produce succinate, acetate, and propionate from the
fermentation of polysaccharides [19, 31-33]. Unlike the patterns observed here for
Muribaculaceae in mice, the abundance of Bacteroides decreased with ACA treat-
ment in one study in humans [17], suggesting that the microbially mediated effects
of ACA may fundamentally differ between these hosts.

Besides hypotheses based on genome content, the correlation between total Murib-
aculaceae abundance and propionate concentrations and the specific association with
OTU-1 and OTU-4 found in the LASSO analysis suggest that both OTUs, and per-
haps other Muribaculaceae species in this study, ferment starch to propionate. This
also supports the hypothesis, discussed above, that both OTUs occupy overlapping
niches. Although increased butyrate concentrations have been frequently reported
with ACA treatment [7, 8, 13, 15, 16|, elevated concentrations of propionate have
been observed in just one previous study using portal blood in rats [7]. Studies in
humans have instead found decreased or no change in fecal [8, 13, 14] or serum [15]
propionate concentrations with ACA. Decreased propionate has been attributed to
preferential production of butyrate from starch fermentation [34, 35] or inhibition of
propiogenic bacteria by ACA [8]. Our observation of increased propionate was robust
and reproduced at all three sites. If this conflicting result reflects both the greater ini-
tial abundance and enrichment in our study of the Muribaculaceae—especially OTU-1
and OTU-4—it demonstrates the value of measuring both community composition
and metabolite concentrations in the same samples.

SCFAs are commonly suggested to act as intermediaries between the gut micro-
biota and host physiology [19]. While our study was not designed to provide a causal
test of effects of SCFAs on longevity, and the power of our analysis was limited, a
statistical association between SCFA concentrations and mouse lifespan supports an
interpretation that is consistent with an extensive literature on the health benefits of
butyrate and propionate [19]. In addition, that SCFA concentrations were associated
with longevity above and beyond the effects of ACA, study site, and sex, further sup-
ports this hypothesis. It is somewhat surprising, however, that a single fecal sample
taken, in some cases, several months before death, could be predictive of longevity.

The association reported here could reflect other, unmeasured, changes in the gut
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microbiome or host physiology. Concentrations of metabolites in feces are an inte-
gration of both production and consumption rates along the length of the lower gut,
and may not reflect host exposure nor the strength of host physiological response. It
is also important to note that, since all mice in this study at the time of sampling
were of an age close to the median lifespan of control individuals, the results are only
relevant to mechanisms of aging in late-life and should not be extrapolated to young
mice. Experimental tests of a causal role for SCFAs in longevity will be challenging,
as they likely require controlled manipulation of intestinal SCFAs for the lifetime of
a mouse.

Due to the preferential enhancement of longevity by ACA in male mice we sought
to identify aspects of the gut microbiome that responded differently in male and
female mice (i.e. interaction effects), as these might suggest mechanistic explanations
for differences in longevity effects [3]. While we do not believe that the magnitude
of sex-by-treatment interactions observed for various aspects of the microbiome were
sufficiently pronounced to fully explain the differential effect of ACA on lifespan,
our search was limited by sample size, variability between study sites, and the large
number of features being tested. Nonetheless, ACA was found to increase propionate
concentrations more in male mice than females, a statistically significant pattern
before correction for multiple testing, and the relative abundance of a handful of
OTUs seem to have also been subject to an interaction.

Mechanisms unrelated to the gut microbiome have been proposed for the effects
of ACA on lifespan. Because ACA reduces the postprandial glucose spike observed in
mice and humans, hypotheses emphasizing the reduction of harmful effects associated
with these transient surges have been most commonly invoked. Studies of UM-HET3
mice given ACA from 4 to 9 months of age suggested that mean daily blood glu-
cose levels are minimally affected, but that absorption of glucose was both slower
and longer lasting [3]. Interestingly, fasting insulin level in ACA-treated males are
much lower than those in control males, consistent with an improvement in insulin
sensitivity [3]. This reduction was not seen in females, where insulin levels in controls
were lower than in control males and similar to those in ACA-treated males [3, 36],
presenting one possible explanation for the stronger longevity benefit in males. Still,
the connection between this modulation of postprandial glucose—with or without
improved insulin sensitivity—and extended longevity is still far from certain.

The work presented here explores a different hypothesis: that health benefits in
ACA mice are related to changes in the activity of microbial communities in the gut

associated with the increased influx of starch, and possibly attributable to known
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health effects of microbial metabolites, including SCFAs. The changes described
here in both community composition and fermentation products due to ACA treat-
ment, along with the statistical association between fecal SCFA concentrations and
longevity, are consistent with this hypothesis, and provide a stepping-stone for future
studies. Interestingly, SCFAs themselves have well-documented effects on glucose
homeostasis (reviewed in [37] and [38]). The two explanations are therefore not mu-
tually exclusive, and the effects of ACA on longevity may be mediated by both glucose
physiology and microbial activity in the gut.

2.4 Conclusions

Here we have tested four predictions of a proposed model connecting ACA to lifes-
pan via the gut microbiome. We demonstrate that ACA reproducibly modulates the
composition of the microbiota, as well as the concentrations of fermentation prod-
ucts, increasing the abundance of butyrate and propionate. In addition, we provide
evidence that the structure of the microbial community is an important factor in
the composition of metabolites produced. Finally, we show an association between
SCFA concentrations in feces and survival, suggesting a role of the microbiome in the
life-extending properties of ACA. Together, these results encourage a new focus on

managing the gut microbiota for host health and longevity.

2.5 Methods

2.5.1 Mouse housing and ACA treatment

All mice used in this study were maintained in specific-pathogen free conditions, and
the protocols for husbandry and experimentation were approved by the Institutional
Animal Care and Use Committees at each of the three institutions. Mice were bred
and housed, and lifespan was assessed as described in [3]. Briefly, at each of the three
study sites, genetically heterogeneous, UM-HET3, mice were produced by a four-way
cross as previously described in [39]. After weaning, mice were fed LabDiet® (TestDiet
Inc.) 5LG6 produced in common batches for all sites. At 42 days of age, electronic
ID chips were surgically implanted and treatment randomly assigned to each cage
housing four mice to a cage for females and three to a cage for males. ACA-treated
mice were fed the same chow amended with 1,000 ppm ACA (Spectrum Chemical

Manufacturing Corporation) from 8 months of age onwards. Mice were transferred
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every 14 days to fresh, ventilated cages with water provided in bottles. Colonies at
all three sites were assessed for infectious agents four times each year, and all tests

were negative for the entire duration of the study.

2.5.2 Sample collection and processing

Fresh fecal pellets were collected directly from mice between 762 and 973 days of
age and frozen at -80 . We did not control the time of day at collection. While
differences in age and collection time could have added variability to SCFA concen-
trations, both were similarly distributed for the different treatment groups, so they
are unlikely to confounded our analyses. To eliminate potential cage effects from
co-housed mice [40], samples were obtained from no more than one randomly selected
mouse per cage. A total of 144 samples were collected from 12 male and 12 female
mice in both control and ACA treatment groups at each of the three sites. Samples
were shipped on dry ice and then stored, frozen, until processing. For approximately
the first half of samples, we extracted the soluble fraction by homogenizing pellets
with 200 puL of nuclease-free water. For the remaining samples, we instead used a
1:10 ratio (weight:volume), with a maximum volume of 1.5 ml. This was found to im-
prove quantification in higher weight samples. While SCFA concentration estimates
were higher when using the amended protocol, the order of sample extraction was
fully randomized, so it is unlikely to have biased our interpretations. Homogenized
samples were centrifuged at 10,000 x g for 10 minutes to separate soluble and solid
fractions. The supernatant was then serially vacuum filtered, ultimately through a
0.22 pm filter, before HPLC analysis. The solid fraction was frozen prior to DNA
extraction. Four samples were excluded from chemical analysis and one from DNA
analysis due to technical irregularities during sample processing.

Prior to DNA extraction, fecal pellet solids were thawed and, where necessary,
subsampled for separate analysis. To move beyond relative abundance, solids were
weighed and spiked with 10 uL aliquots of prepared Sphingopyzis alaskensis strain
RB2256—an organism not found in mouse feces—in order to compare 16S rRNA
gene abundance between samples [41, 42]. The spike was prepared as follows: a 1:200
dilution of a stationary phase S. alaskensis culture was grown at room temperature
for approximately 44 hours in R2B medium with shaking. This culture was harvested
at a final OD420 of 0.72 before being rinsed in PBS and resuspended—>-fold more
concentrated—in 20% glycerol in PBS (v/v). Aliquots of these cells were stored at

-20 before extraction and sequencing. Spiked fecal samples were homogenized in
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nuclease free water at a ratio of 1:10 (w/v). DNA was extracted from 150 uL of this

mixture using the MoBio PowerMag Microbiome kit.

2.5.3 Chemical analysis

The chemical composition of samples was assessed on a Shimadzu HPLC (Shimadzu
Scientific Instruments) equipped with an RID-10A refractive index detector. 30 uL
injections were run on an Aminex HPX-87H column (Bio-Rad Laboratories, Hercules,
CA) at 50 with 0.01 N H,SO, mobile phase and a flow rate of 0.6 ml/minute. Ex-
ternal standards were run approximately daily containing acetate, butyrate, formate,
glucose, lactate, propionate, and succinate at 8 concentrations between 0.1 mM to
20 mM. Due to the complexity of the chromatogram, the identity and area of re-
tained peaks was curated manually, assisted by the LC Solutions Software (Shimadzu
Scientific Instruments) Standard curves were fit using weighted regression (inverse
square of the concentration), and, for all compounds except propionate, without an

intercept.

2.5.4 16S rRNA gene sequencing and analysis

The V4 hypervariable region of the 16S rRNA gene was amplified from extracted DNA
(as described in [43]), and sequenced on an Illumina MiSeq platform using a MiSeq
Reagent Kit V2 500 cycles (cat# MS1022003). Amplicon sequences were processed
with MOTHUR (version 1.39.4 [44]) using a protocol based on the 16S standard
operating procedures [43]. Scripts to reproduce our analysis can be found at [45].
After fusing paired reads, quality trimming, and alignment to the SILVA reference
database (Release 132 downloaded from [46]). The vast majority of 16S rRNA gene
sequences were between 244 and 246 bp. Sequences were classified using the method
of Wang et al. [47] as implemented in MOTHUR and with the SILVA non-redundant
database as a reference [48]. We clustered sequences into OTUs using the OptiClust
method [49] at a 97% similarity threshold. We counted and removed sequences clas-
sified as S. alaskensis, the spiked-in standard, before further analysis. We did not
attempt to assess the exact number of 165 rRNA gene copies spiked into samples.
Instead, spike-adjusted abundance was defined in units based on the standardized

spike (uL spike equivalents / g sample) and estimated using the formula:

(TotalEndemicReadCount x SpikeVolume)
(TotalSpikeReadCount x SampleWeight)

RelativeAbundance x
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Family level abundance was calculated as the summed abundance of all sequences
clustered in OTUs classified to that family. OTU counts were randomly subsampled
to the minimum number of reads before calculating Chaol richness, but were not
subsampled for other analyses. A single, independent realization of random subsam-
pling was used for each richness calculation. A search of the NCBI non-redundant
nucleotide database for related sequences from cultured bacteria was carried out us-
ing the BLASTn web tool [50] searching the non-redundant nucleotide database with

default parameters and excluding sequences from uncultured organisms.

2.5.5 Statistical analysis

A 0.05 P-value threshold was used to define statistical significance, with values below
0.1 considered “suggestive”. Except where specified, P-values are not corrected for
multiple testing. Due to the risk of violating distributional assumptions, univariate
comparisons between groups were done using the non-parametric Mann-Whitney U
test. Differences in multivariate community composition and dispersion were tested
using PERMANOVA (adonis) and PERMDISP (betadisper) respectively, both im-
plemented in the vegan package (version 2.46 [51]) for the R programming language.
Bray-Curtis dissimilarity was used as the $-diversity index.

Differences in the relative abundance of individual OTUs were surveyed using
the DESeq2 package (version 1.18.1 [52]) for R, and fitting a model that included
terms for treatment, sex, site, and the interaction between treatment and sex. So as
to keep valuable distributional information, all OTUs found in at least two samples
were included in the initial analysis, with P-values calculated using a Wald test. How-
ever, FDR correction using the Benjamini-Hochberg procedure [53] excluded “rare”
OTUs—those with mean relative abundance less than 0.01% or detected in fewer than
5% of samples—in order to maintain statistical power by independently reducing the
number of tests.

Interactions between sex and treatment in fecal SCFAs were assessed for log-
transformed concentrations. The small number of zeros were replaced with half the
lowest detected concentration for that metabolite. Interactions were tested in an
ANOVA that also included terms for site, sex, and treatment. LASSO regressions of
the three SCFAs and lactate against spike-adjusted OTU abundances were performed
using the scikit-learn library for Python (version 0.18.2 [54]) and log-transformed
concentrations after adjustment for site, sex, and treatment. OTUs detected in more

than 5% of samples and with mean abundance greater than 0.01% were included. The
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LASSO parameter was determined by randomized 10-fold cross-validation, optimizing
for out-of-bag R2. For each metabolite we confirmed that OTU abundance informa-
tion improved predictions by testing the Spearman’s rank correlation between true
values and out-of-bag predictions of the best model using a Student’s t-distribution
approximation [55] and a P = 0.05 significance threshold. While this type of regular-
ized regression is primarily useful for constructing predictive models, and biological
interpretation can be challenging, non-zero regression coefficients are suggestive of co-
variates that are among the most strongly associated with a response. Proportional
hazards regression was carried out using of the survival package (version 2.413 [56])
for R, and the day of fecal sampling as the entry time. All sampled mice were dead
at the time of analysis and right-censoring was therefore not used. Standardized HRs
reported for SCFAs are based on concentrations that have been centered around 0

and scaled to a standard deviation of 1.

2.5.6 Availability of data and materials

The sequence datasets generated and analyzed during the current study have been
uploaded to the SRA database, accession SRP136736. Full-cohort survival data an-
alyzed for portions of this study are available from the corresponding author on
reasonable request. Code and metadata needed to reproduce the processing of raw

data and downstream analyses is available on GitHub [45].
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CHAPTER 3

Muribaculaceae genomes assembled from
metagenomes suggest genetic drivers of
differential response to acarbose

treatment in mice

3.1 Background

The mammalian gut microbiome is a complex ecological system that influences energy
balance [1], pathogen resistance [2], and inflammation [3], among other processes with
importance to host health. Understanding how the bacterial inhabitants of the gut
respond to pharmaceutical and dietary perturbations is a major step in developing
a predictive framework for microbiome-based therapies. Acarbose (ACA) is an o-
glucosidase inhibitor prescribed for the treatment of type 2 diabetes mellitus because
it reduces the absorption of glucose from starch in the small intestine [4]. In rodents,
ACA has been shown to increase the amount of starch entering the lower digestive
system after a meal [5], resulting in changes to the composition of the gut microbiota
and its fermentation products [5-12]. Interestingly, long-term treatment with ACA
has been shown to substantially increase longevity in male mice and to a lesser extent
in females [13, 14].

In Chapter 2 it was shown that the relative abundance of a number of bacterial
taxa as well as the concentrations of propionate and butyrate respond to long term
treatment with ACA. This study was notable in being replicated across three sites:
The University of Michigan (UM) in Ann Arbor, The University of Texas Health Sci-
ence Center at San Antonio (UT), and The Jackson Laboratory (TJL) in Bar Harbor,
Maine. At UM and TJL one highly abundant operational taxonomic unit (OTU),

classified as a member of the Bacteroidales family Muribaculaceae and here desig-
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nated as B1, was found to be enriched nearly 4-fold in ACA treated mice. Bl was
also present and abundant at UT but was not found to be significantly more abun-
dant in ACA treated mice relative to controls. Instead, a different member of the
Muribaculaceae, designated B2, was found to be highly abundant and 4-fold enriched
in ACA-treated mice, but was nearly absent at UM and TJL. Other Muribaculaceae
were also identified as among the most abundant members of the mouse gut micro-
biota across the three sites, although none of these were found to be enriched in ACA
treatment.

Family Muribaculaceae—formerly the S24-7 and sometimes referred to as Candi-
datus Homeothermaceae—has only one published cultivar [15] despite being a com-
mon and abundant inhabitant of the mammalian gut, especially in mice [16]. Previous
studies have suggested that the Muribaculaceae specialize on the fermentation of com-
plex polysaccharides [16], much like members of the genus Bacteroides also in order
Bacteroidales.

Recently, techniques have been developed for the reconstruction of genomes of un-
cultivated members of bacterial communities [17, 18]. Based on 30 such metagenome
assembled genomes (MAGs) they reconstructed using this approach, Ormerod et
al. [16] proposed that the Muribaculaceae fall into three distinct carbohydrate uti-
lization guilds, which they describe as specialists on o-glucans, plant glycans, and
host glycans, respectively. While it is reasonable to expect that o-glucan specialists
would be most benefited by the large influx of starch to the gut resulting from ACA
treatment, this prediction has not been tested, and physiological inferences based
on the genome content of members of this clade have been largely divorced from
biological observations.

Experimental perturbations of complex microbial communities present an oppor-
tunity to observe ecological features of many bacterial taxa without cultivated mem-
bers and generate hypotheses about their physiology. Given the observed, dramati-
cally increased relative abundance of B1 and B2 (here referred to as “responders”) in
mice treated with ACA, we hypothesize that these OTUs are capable of robust growth
on starch, while the other Muribaculaceae found in the study (“non-responders”), lack
the genomic features necessary for the utilization of the polysaccharide. Alternatively,
responders may be resistant to the inhibitory effects of ACA, or benefit from elevated
levels of intermediate starch degradation products. Since isolates of the Muribac-
ulaceae species in these mice are not available for characterization, a comparative
genomic approach is taken to explore their functional potential.

Most of the research on the genomic components of polysaccharide degradation
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in gram negative bacteria has been carried out in the genus Bacteroides, and in
particular B. thetaiotaomicron [19]. Starch utilization in B. thetaiotaomicron is de-
pendent on an ensemble of eight proteins, SuSRABCDEFG that enable recognition,
binding, hydrolysis, and import of starch and related polysaccharides [20]. Homologs
of SusC and SusD characterize all known polysaccharide utilization systems in this
clade [21], are encoded in Sus-like genomic regions known as polysaccharide utiliza-
tion loci (PULSs), and are widespread in the Bacteroidetes [22]. The molecular range
of these systems is determined by the carbohydrate-active enzymes and structural
proteins they encode, based on the specificity of glycoside hydrolase (GH) and carbo-
hydrate binding module (CBM) domains, which have been extensively cataloged in
the dbCAN database [23, 24].

Here MAGs from the feces of mice at UT and UM are analyzed to explore two
closely related questions about the niche of B1 and B2 in the lower digestive system.
First, why do B1 and B2 each increase with ACA treatment, while other Muribacu-
laceae do not? And second, why is the response of B1 site specific? Despite similar
patterns of abundance at their respective sites, these two OTUs seem to be only
distantly related, sharing just 90% of nucleotides in their 16S rRNA gene V4 hyper-
variable region (see Appendix A). We nonetheless find genomic evidence that Bl and
B2 occupy overlapping niches, specializing in the degradation of a-glucans, a role not
held by the other Muribaculaceae described in this study. In addition, we identify
two distinct variants of B1, referred to as B1-A and B1-B, which are differentially
distributed between UM and UT and have functionally relevant differences in gene
content.

Reconstructing genomes from metagenomes allow for the comparison of the func-
tional potential of Muribaculaceae at UM and UT. This work demonstrates the utility
of culture-free genomics to understand the ecological role of these key members of the
mouse gut microbial community and explore several hypotheses that may explain
differences in the distribution and response of bacteria to perturbations. Hypothe-
ses derived from this analysis provide a foundation for future physiological studies
in recently obtained cultivars. While a preponderance of host-associated bacterial
species have never been isolated, let alone characterized [25], combining experimental
data from complex communities with the analysis of reconstructed genomes provides

a powerful tool for expanding understanding to these understudied taxa.
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3.2 Results

3.2.1 Recovered population genomes are of high quality and

resemble other Muribaculaceae genomes

MAGs were constructed for 7 populations in the family Muribaculaceae, including
ACA responders B1 and B2, and non-responders B3 through B7. For B1, two genomic
variants were recovered, B1-A and B1-B, MAGs that possess 0.63 and 0.36 Mbp
of unshared sequence, respectively (additional details about these variants are in
Section 3.2.3). All 8 novel MAGs are estimated to be of high completeness and
all had less than 1% estimated contamination based on the recovery of ubiquitous,
single-copy genes. The median N50 statistic was approximately 71 kbp, indicating
successful assembly, and suggesting that inferences based on genomic context are
generally possible. Estimated genome sizes, GC%, and number of predicted genes
are all similar to previously published MAGs as well as the finished Muribaculum

intestinale YL27 genome.

Table 3.1: Summary of novel MAGs compared to the genome of Muribaculum in-
testinale YL27

Taxon Completeness’ Scaffolds Length? N50 GC in Chapter 2
YL-270 99% 1 3.3 3,307,069 50.1%

B1-A 97% 228 3.2 41,412 46.6% OTU-1
B1-B 97% 152 3.0 59,916 46.9% OTU-1

B2 98% 65 2.6 79,454 50.5% OTU-4

B3 86% 98 2.2 63,818 54.0% OTU-6

B4 98% 31 2.7 148,039 55.2% OTU-5

B5 86% 50 2.5 78,179 55.7% OTU-8

B6 99% 110 3.2 87,115 48.3% OTU-30

B7 98% 97 2.5 59,037 53.9% OTU-39

! Estimated by CheckM [26]
2 Total length in Mbp
3 Muribaculum intestinale YL-27 reference genome

In order to confirm the assertion that each of the reconstructed genomes is repre-
sentative of Muribaculaceae OTU described in Chapter 2, per library mapping rates
of each genome were compared to the relative abundance of the associated 16S rRNA
gene in amplicon libraries. Despite the biases and technical variability inherent to
both sequencing methods, and the limitations of mapping software, Pearson correla-

tion coefficients between the fraction of reads mapped and OTU relative abundance
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were above 0.86 for all MAGs,

3.2.1.1 Phylogenetics

To better understand the evolutionary relationships between these organisms, a con-
catenated gene tree was constructed for all 8 novel MAGs, as well as 30 publicly
available MAG sequences [16], and M. intestinale YL27. The tree was rooted by four
other Bacteroidales species: Bacteroides ovatus (ATCC-8483), Bacteroides thetaio-
taomicron VP1-5482, Porphyromonas gingivalis (ATCC-33277), and Barnesiella vis-
cericola (DSM-18177). Most internal nodes were found to have high topological con-
fidence, and the placement of the MAGs reconstructed by Ormerod et al. was highly
consistent with their published tree. To check that this concatenated approach is re-
flective of the organismal evolutionary history, a second maximum likelihood tree was
constructed based on the rpoB gene, which is generally not thought to be transmitted
horizontally, (despite exceptions [27]), also recapitulating the published topology. The
estimated phylogeny shows that the 8 OTUs with newly reconstructed MAGs encom-
pass most of the documented diversity of Muribaculaceae. Two of our taxa, B2 and
B6, appear to be closely related to taxa with genomes reconstructed by Ormerod et
al.: M6, and M1, respectively. Nonetheless, this phylogenetic analysis suggests that

many of the genomes reconstructed here have not been described previously.

3.2.1.2 Novel protein families

Annotations based on alignment to a database of previously characterized sequences
may provide only limited insight, in particular for genomes from largely unstud-
ied families of bacteria. In order to identify previously uncharacterized orthologous
groups, de novo clustering [28] was carried out based on amino acid similarity of
all putative genes found in the 8 novel MAGs, 30 previously reconstructed MAGs,
M. intestinale, four publicly available draft genomes from the family, and the four
reference Bacteroidales. The resulting clusters are referred to as operational protein
families (OPFs). While a fraction of the 12,648 resulting OPFs may be due to spu-
rious sequence similarity and without biological relevance, 5,767 had representatives
in at least three genomes, increasing the likelihood that these reflect evolutionarily
conserved protein sequences. Of these, only 2,404 had members annotated with any
COG, KO, or putative function. The remaining 3,363 OPFs include 17,831 predicted

proteins across the 47 genomes
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Figure 3.1: Comparison of novel and previously described Muribaculaceae genomes.
Novel MAGs (for OTUs “B1” through “B7”) are combined with the finished genome
for M. intestinale strain YL27, as well as 30 MAGs reconstructed by Ormerod et
al., hypothesized to reflect three polysaccharide utilization guilds: specializing on
o-glucans (points and labels colored blue), host glycans (violet), and plant glycans
(green). (A) Novel MAGs were placed in a phylogenetic context using a maximum-
likelihood concatenated gene tree based on an amino-acid alignment of 9 shared,
single-copy genes, and four other Bacteroidales species as an outgroup. Nodes with
less than 70% confidence are collapsed into polytomies and topological support greater
than 95% is indicated (black dots). Branch length indicates an estimate of expected
substitutions per site. (B, C) Functional comparisons were visualized by plotting
the first two principal components of an ordination on annotation counts of either
(B) eight COGs identified by Ormerod et al. as maximally discriminatory between
hypothesized guilds, or (C) de novo clusters based on sequence similarity of GH
domain containing proteins. PCA was performed on the 30 MAGs reconstructed by
Ormerod et al. and the percent of variation described by the first two components
is included in the axis labels. All genomes were then projected onto that space.
Novel MAGs (black triangles) are labeled, as are the previously described MAGs M1,
M6, and the proposed H. arabinozylanisolvens (Ha), and the finished genome of M.
intestinale (Mi, grey circle).
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3.2.1.3 Annotation ordination

To compare novel MAGs to other available genomes, a previous published analy-
sis was recreated, harnessing a set of 8 COGs found by Ormerod et al. to maxi-
mally differentiate the three hypothesized guilds. By projecting genome annotations
onto a reproduction of this previously defined space (see Figure 3.1), newly available
genomes were compared to the three clusters hypothesized to represent specializa-
tion on o-glucans, plant glycans, and host glycans. While the 8 novel MAGs inhabit
approximately the same volume as those previously reconstructed, and some could
be plausibly classified based on these criteria, the ambiguous placement of B4 and
M. intestinale suggests that new genomes will present additional exceptions to the
three-guild model.

It is notably that both responders cluster with the proposed o-glucan guild,
consistent with a functional potential for starch utilization not present in the non-
responders. To expand on this descriptive analysis and to leverage the more com-
prehensive view provided by de novo clustering to explore differences and similarities
in carbohydrate utilization potential, a second ordination of genomes was performed,
this time based on OPF labels of predicted genes found to contain GH domains (Fig-
ure 3.2). Similar to the previous ordination based on COGs, three groups of genomes
approximately reflecting those proposed by Ormerod et al. are apparent. However,
the placement of B2 (as well as the closely related M6) relative to the proposed guilds

are substantially different.

3.2.2 Comparison of responder and non-responder MAGs

suggest genomic features with role in starch utilization

Based on the characterization of genes and genomic regions with a role in starch
utilization in the closely related genus Bacteroides, it is plausible that a-amylase
localized to the outer membrane may be common to starch utilizing bacteria in the
order Bacteroidales [29]. Indeed, B1 has three OM-localized genes predicted to code
for GH13 containing lipoproteins (B1A 280, B1IA 301, B1A 333), each in a separate
PUL (see Figure 3.2). While it also includes members without this activity, GH13
is the main family of c-amylases [30]. These genomic regions also possess additional
genes with carbohydrate-active domains that are expected to interact with a-glucans.

Besides B1, B5 is the only other OTU to possess a putative PUL coding for a
full complement of predicted starch-active proteins. Several OPFs have members

in both this region and either B1 or B. thetaiotaomicron PULSs, suggesting shared
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Figure 3.2: Polysaccharide utilization loci in Bacteroidales. Diagrams of the Sus
operon (A) and the dextran associated PUL (B) of B. thetaiotaomicron along with
five putative starch-associated PULs identified in three Muribaculaceae MAGs (C-
G). Predicted protein coding sequences are shown as boxes pointed in the direction
of transcription. Homology to SusC, SusD, and SusEF is indicated. Protein regions
with homology to starch-associated GHs, as well as GH66, and CBMs are shown
as shallow rectangles, and are colored as indicated in the legend. Several OPFs
are noted with members in multiple genomes, including clusters that contain SusR
(Opf01144), SusA (Opf01391), and SusB (Opf00018). The inferred localization of
each protein product is also indicated: cytoplasmic (genes labeled C), periplasmic
(P), outer membrane (O), or inner membrane (I).
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function. This set including SusC-homologs Opf01277, Opf02066, which includes
relatives of SusD, and Opf02791 whose members possess CBM20 starch-binding do-
mains. However, while B5 also has a GH13 containing lipoprotein (B5 1713), its
predicted localization is on the inner membrane. It is unclear whether this explains
B5’s non-response in ACA-treated mice. Plausible OM-localized, GH13 containing
proteins are not found in any non-responders. While this characteristic does not seem
to perfectly discriminate responder from non-responder OTUs—B2 also lacks such a
gene—it nonetheless demonstrates concordance between inferred genomic features
and observed population dynamics.

Despite the absence of a GH13 domain on the outer-membrane, it is plausible that
B2 is capable of degrading starch using other enzymatic machinery. We speculate
about one putative locus (see Figure 3.2 panel F), which has a similar gene content
to characterized [31-33] dextran PULs in B. thetaiotaomicron and B. ovatus.

To expand the search for relevant genetic features, de novo protein clusters were
filtered to those with members in the MAGs for both B1 and B2. Of these OPFs,
several stood out as particularly relevant. Opf01144 includes SusR, the regulator of
transcription of the starch utilization system in B. thetatotaomicron, as well as its
homolog in B. ovatus. It is an apparent subcluster of the larger family defined by
K21557, and in many cases is encoded directly upstream of susC' in putative PULs
which consider likely to have affinity for o-glucans. In B1, two of the three putative
starch PULs encode a member of Opf01144, and it is similarly located in PULs with
starch-active CBM and GH domains in B2 and B5. In addition, of the seven MAGs
reconstructed by Ormerod et al. that encode a member of this cluster, five of them
are classified to the o-glucan guild. It is plausible that members of Opf01144 share a
functional role regulating transcriptional responses to a-glucans.

Opf01391, which recapitulates K21575, includes SusA: the periplasmic neopullu-
lanase of B. thetaiotaomicron and an important component of starch utilization in
that organism [34]. This family is found in the MAGs of both responders, B1 and
B2, and none of the non-responders. What’s more, it’s found in twelve of the thirteen
a-glucan and a minority of the plant glycan guild members. Interestingly, although
it is encoded by the Sus operon in B. thetaiotaomicron and its homologous locus in
B. ovatus, in the Muribaculaceae members of Opf01391 do not in general appear to
be encoded in PULs.

44



B1-A Genes B1-B Genes

. [ HiT \
. H I‘ “I\IH

@.
=
e

VOvvevvYYYYYevvey

! |\‘ | I } : 1 |
'“HW‘IIII\IIHJ 1] HI Il HM ‘

Mouse

[FAsii4iiiiiiavaiisavevwvvy

Normalized Coverage

Figure 3.3: Visualization of differential gene content in two B1 populations.
Heatmaps depict mapping coverage of metagenomes against putative protein coding
genes in the B1-A or B1-B MAG normalized to the median coverage. Rows repre-
sent one or more pooled libraries for each mouse included in the study and columns
represent individual genes. The site at which each mouse was housed is indicated by
triangles in the far left column: UT (green, left pointing) or UM (blue, right). Filled
triangles correspond to those mice flagged as representative of a single B1 variant for
downstream analysis. Genes are shown only where the median normalized coverage
ratio between these B1-A and B1-B specific metagenomes is greater than 1.5. Rows
and columns are arbitrarily ordered to maximize visual distinction between variants.

3.2.3 (Genomic variation in B1

Two distinct variants of B1 were identified with one found in a majority of the UT
mouse metagenomes, and the other ubiquitous at UM. Using the nucmer tool for
genome alignment [35], 19.6% of B1-A MAG sequence and 12.2% of B1-B were found
to not align to the other. While these hundreds of kbp may in part reflect errors in
genome recovery, much of the unaligned length suggests differences in gene content
between distinct sub-populations of B1. This observation was confirmed by assessing
the mapping of metagenomic reads against predicted protein coding genes in each
variant. For each pairing of metagenomic read library to genomic variant, gene cov-
erage was normalized by the median gene coverage in order to identify genes with
conspicuously fewer reads in particular subsets of the mice. Libraries have low cov-
erage of large portions of either the B1-A or B1-B MAG (see Figure 3.3), suggesting
that mice are primarily inhabited by one of the two variants, and that a portion of

genes are variant specific.
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Metagenomic libraries manually chosen as unambiguous representatives of a single
B1 MAG were used to systematically identify genes differentiating the two. The
median normalized mapping depths in each set of libraries against predicted genes in
each MAG were compared, providing a measure of the relative enrichment or depletion
of genomic sequences between the two populations of B1. This analysis found 12.8% of
predicted genes in B1-A were depleted at least 5-fold in B1-B populations, and 12.4%
the reverse. While this observed depletion could indicate variation in copy number,
differential gene content between variants is a more parsimonious explanation for
most loci. These predicted genes reflect 2.7% of unique KOs in B1-A and 1.9% in
B1-B. Interestingly, the fraction of variant specific OPFs is greater, 7.5% and 7.1%
respectively, suggesting that de nowvo clustering could be more sensitive to potential

differences in physiology.

Table 3.2: Summary of variant specific features in two B1 MAGs

B1-A B1-B
Total Specific Total Specific
Nucleotide length! 3.23  0.63 2.96  0.36

Genes 2,710 348 2,496 309
OPFs? 2,308 173 2,202 157
KOs? 1,056 29 1,033 20
COGs? 716 8 709 3
Lin Mbp

2 unique

Given the observation that the relative abundance of B1 was dramatically in-
creased with ACA treatment at UM, while not being significantly affected at UT,
and that B1-B was not found in metagenomes at UM, we searched for differences in
functional potential between the two variants that could explain this pattern.

Genomic regions apparently specific to Bl-A—defined as an at least 5-fold
enrichment—include just one PUL (SusC-homolog encoded by B1A 00048). This
locus includes a predicted outer membrane localized GH30 containing protein. Char-
acterized GH30 containing proteins have (-glucosylceramidase, [>-1,6-glucanase, or
B-xylosidase activity [36]. Given that this PUL also encodes a periplasmic, GH3
containing protein, it appears to be unlikely that it has specificity for starch. The

B1-A MAG also possesses numerous phage insertions not seen in the B1-B recon-
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struction. Conversely, a CRISPR operon including 25 repeat units (Cas9 encoded by
B1B 01367) appears to be specific to B1-B.

Most strikingly, a 16 kbp region (from B1A 01498 to B1A 01514) specific to
B1-A was found to contain several genes with homology to cell capsule and ex-
opolysaccharide synthesizing enzymes. Based on annotations with KEGG orthologous
groups, these include homologs of tuaG (K16698), tagE (K00712), gmhB (K03273),
gmhA/lpcA (K03271), hddA (KO07031), exoO (K16555), waaH (K19354), and
tagF (K09809). Interestingly, the B1-B MAG contains a different such region of
about 6.5 kbp (B1B_00851 to B1B_00856) with wfeD (K21364), pglJ (K17248), and
epsH (K19425). For each, several of the OPFs in the respective regions were not
found anywhere in the opposing genome, suggesting that the makeup of each vari-

ant’s exterior surface might be distinctly different.

3.3 Discussion

Mice are a key model system for study of the mammalian gut microbiome, with an
outsized importance in testing mechanistic hypotheses for the role of this community
on host health [37]. The generalizability of observations made in mice is a constant
concern [37], in part due to extensive difference in taxonomic composition compared
to humans [15]. The members of the Muribaculaceae are abundant in the murine gut
microbiome [16]. While these bacteria are also found in humans (although at lower
abundance), only one cultivated member of this clade has been described [15]. As a
result, the ecological roles of these taxa have not been characterized, and observations
in mouse model systems are therefore less valuable for understanding related processes
in the human gut microbiome. Attempts to study these organisms leverage genomes
reconstructed from metagenomic reads, and have proposed—in the absence of exper-
imental data—that members of the family consume a diversity of polysaccharides in
the lower gut.

Here we have extended that approach to eight new genomes, and associated those
with taxa for which changes in relative abundance in response to ACA treatment have
been experimentally assessed. This enabled us to explore why responders Bl and B2
each increase with ACA treatment, while the other Muribaculaceae do not. Anno-
tations of reconstructed genomes suggest that these may possess starch degradation
capabilities absent in the non-responders.

We examine the three-guild model proposed by Ormerod et al. [16] by reproduc-

ing their dimensional reduction approach with the addition of these new genomes.
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In this analysis, B1 and B2 annotations appear to be consistent with a hypothe-
sized a-glucan degradation guild, supporting their interpretation. A more nuanced
approach to annotation was also applied by constructing de novo clusters of proteins
based on homology. Interestingly, this analysis indicates that B2, and the closely
related M6, share physiological potential with taxa in the host-glycan guild, suggest-
ing that a more detailed examination can identify specific functions that discriminate
responders from non-responders. This approach is bolstered by the phylogenetic and
genomic distinction between B1 and B2, reducing the confounding effects of shared
evolutionary history.

By including otherwise unannotated genes, genomic comparisons based on OPFs
instead of previously defined gene orthologies may better reflect shared functional po-
tential. Besides the identification of potentially novel gene families, de novo homology
clustering [28] also enables differentiation of sub-groups not captured by standard an-
notations. For instance, hypothetical genes annotated as homologs of SusC, SusD,
and SusEF, were clustered into 119, 162, and 33 different OPFs respectively. It is
plausible that this sub-clustering captures differences in protein structure with impor-
tance in oligo- and polysaccharide recognition, import, and binding. Combined with
annotation of characterized functional domains, these clusters may better predict the
polysaccharide utilization ranges of uncultured organisms.

A detailed analysis of PULs identified multiple loci in B1 that appear to be
adapted to the degradation of starch or related carbohydrates, due to the presence of
an OM localized GH13 containing protein [38]. Counterintuitively, B2 had no such
PUL, suggesting that its response to ACA may result from other enzymatic capa-
bilities. Of particular interest is a PUL encoding proteins with GH97, CBM20, and
CBM69 domains, all of which have documented activity on starch [39, 40]. While the
only outer-membrane localized hydrolase in this PUL is a GH66, and members of this
family have characterized activity on the o-1,6 linkages between glucose monomers
in dextran [41]. It is plausible that this PUL can be repurposed and confers some
ability to grow on starch.

In addition, a gene encoding a SusA homolog was identified in both B1 and B2 but
in none of the non-responders. While it is unclear how expression of this important
component of starch utilization might be regulated, given that it is not located in a
PUL in either of the responders, SusA is important for growth on amylopectin in B.
thetaiotaomicron [34]. Since inhibition by acarbose is variable across enzymes [42],
it is possible that acarbose treatment results in elevated levels of dextrin and mal-

tooligosaccharides in the lower guts of mice due to residual a-amylase activity, even
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at levels sufficient to prohibit host digestion. Periplasmic hydrolysis of these starch
breakdown products may be sufficient for increased abundance of these taxa in acar-
bose treated mice.

It is notable that two distinct variants of Bl were identifiable in these
metagenomes, and that the distribution of B1-A and B1-B are reminiscent of the pre-
viously observed site-specificity of ACA response. Despite evidence that genomic vari-
ation is common in the bacterial world [43, 44], studies reconstructing genomes from
metagenomes often ignore this possibility (with a few notably exceptions [45, 46]).
The discovery of two subpopulations of B1 therefore demonstrates the value of con-
sidering pangenome dynamics, and presents a potential explanation for the observed
site-specific response of that taxon. The finding that both variants have the same
complement of three PULs apparently specializing in starch utilization and the same
SusA homolog does not support the hypothesis that differences in starch utilization
potential account for these abundance patterns. We did, however, identify numerous
differences in the gene content of B1-A and B1-B, including variant specific loci that
may influence the structure and function of the outer surface of the cell. Capsule
variation is known to greatly affect both ecological and host interactions [47].

While these results do not establish a mechanistic explanation for differences in the
response of B1 at UM and UT, nor conclusively identify starch utilization pathways in
B2, they do suggest a number of genomic features that likely contribute to previously
observed patterns in taxon abundance. Future studies utilizing metatranscriptomic
analysis might demonstrate active expression of these genes, or differential expression
in mice treated with acarbose compared to controls. Likewise, even in the absence of
a B2 cultivar, the sufficiency of the dextran PUL for increased growth with acarbose

treatment could be tested using available cultivars, including B. thetaiotaomicron.

3.4 Conclusions

In this study we have reconstructed and described genomes representing 7 OTUs in
the family Muribaculaceae from the mouse fecal microbiome, and have found fea-
tures that differentiate those that respond positively to ACA treatment from those
that do not. This analysis suggests that utilization of starch and related polysaccha-
rides enables increased population size in mice treated with the a-amylase inhibitor.
In addition, two distinct genomic variants of one taxon were identified that differ in
functional gene content, potentially explaining site-specific differences in response. By

combining observed changes in relative abundance during experimental manipulation
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with inferred functional gene content, we are able to study mammalian symbionts in
the absence of cultured representatives. This sequence-based approach is broadly ap-
plicable in microbial ecology and enables improved understanding of in situ dynamics

within complex microbial communities.

3.5 Methods

3.5.1 Mouse treatment, sample collection, extraction and se-

quencing

Mice were bred, housed, and treated as described in [13]. Briefly, genetically het-
erogeneous UM-HET3 mice at each study site were produced by the four-way cross
detailed in [48]. Mice were fed LabDiet (TestDiet Inc.) 5LG6 from weaning onwards.
Starting at 8 months of age, mice randomly assigned to treatment were fed chow
with 1,000 ppm ACA (Spectrum Chemical Manufacturing Corporation). Mice were
housed 4 males or 5 females to a cage. Colonies were assessed for infectious agents
every 3 months, and all tests were negative.

Individual fecal pellets were collected from a single mouse per cage. 16S rRNA
gene libraries and metabolite analyses of these samples are described in Chapter 2.
From this collection, a subset of samples were non-randomly selected for metagenomic
sequencing based on various criteria. Samples were from 54 mice, with at least six
treated and control representatives of both males and females at each site.

Fecal samples were slurried with nuclease free water at a 1:10 (w/v) ratio, and
most samples were spiked with Sphingopyzis alaskensis RB2256 prepared as described
in Chapter 2 before DNA extraction and sequencing. Based on alignment to the
reference genome, sequenced reads from S. alaskensis can be distinguished from all
endogenous bacteria in mouse feces. A small number of these were split for both spiked
and unspiked samples, which we used to validate this procedure. For each, 150 uLof
this sample was transferred for extraction using the MoBio PowerMag Microbiome
kit. Metagenomic libraries were prepared using standard procedures sequenced on

the Illumina HiSeq 400 platform using the v4 paired-end 2x150 bp.

3.5.2 Assembly, binning, and MAG refinement

Raw metagenomic reads were deduplicated using FastUniq [49], adapters trimmed

using Scythe [50], and quality trimmed using Sickle [51] to produce processed reads for
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all downstream analyses. The resulting paired-end reads were assembled into primary
contigs using MEGAHIT [52]. Reads were then mapped back to these contigs with
Bowtie2 [53], and per-library coverage was estimated for each contig.

For all contigs >1000 bp in length, dimensional reductions built into CON-
COCT [54] were applied to produce input data for a Gaussian mixture model
(GMM) similar to the procedure used by that program for binning. However, unlike
CONCOCT—due to computational limitations—the model was trained on just 10%
of the input data, sampled randomly, before assigning bins to all contig. While this
may have reduced the accuracy of the binning procedure, we believe that subsequent
refinement steps mitigated the impact of this decision.

OTUs were classified taxonomically and relative abundance was calculated for
matched libraries as described in Chapter 2. Bins were then recruited to one or
more OTUs by calculating a Canonical partial least squares between OTU abundance
and bin coverage as implemented in the scikit-learn machine learning library for
Python [55]. For bins recruited to OTUs classified as Muribaculaceae, contigs were
re-clustered based on coverage across samples. First “trusted contigs” were manually
selected which correlated closely with OTU abundance. The mean coverage of these
was used to normalize the per-library coverage of all other contigs. Then, using a
GMM, groups of contigs were clustered such that the normalized coverage across
samples was consistent. These groups were used to inform the manual assignment
of contigs to MAGs. Libraries in which MAGs had non-negligible coverage were
identified and used in subsequent refinements. For the Bl reconstruction, but no
other MAGs, a number of groups containing on the order of 10° bp were found with
low coverage in just a subset of libraries. By this criterion, contigs in these “variable”
groups were partitioned into two MAG variants, A and B, with non-variable groups
shared by both. Only libraries that appeared on further inspection to have just one of
the two variants were considered in downstream refinement steps. The mice matching
these libraries are highlighted in Figure 3.3.

For each MAG, several alternative refinement procedures were performed from
which the best quality result was selected. Reads mapping to the curated contigs were
digitally normalized [56-58] and reassembled with SPADES [59]. This reassembly as
well as the original contigs were cleaned using a single pass of the Pilon assembly
refinement tool [60]. Finally, the per-library mapping depths of each position in these
assemblies were compared to the average mapping depth of the “trusted contigs”
selected earlier, and regions with low cosine similarity were excised from the final

assemblies.
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Genome completeness and contamination estimates were calculated based on ubig-
uitous single-copy genes using the program CheckM [26]. Based on these results, the
final assembly with the highest completeness and with contamination < 1% was se-

lected from the various refinements.

3.5.3 Reference genomes

The Muribaculum intestinale genome sequence was obtained from GenBank (acces-
sion GCA_002201515.1), as well as four additional draft genomes (GCA_003024805.1,
GCA _003024815.1, GCA_002633305.1, GCA 002633115.1). While other genomes la-
beled as Muribaculaceae have also been deposited, they were excluded from this anal-
ysis due to redundancy or apparent misidentification to the family. The 30 MAGs
reconstructed by Ormerod et al. [16] were obtained from the SRA. For compari-
son, nucleotide sequences for B. thetaiotaomicron VPI-5482 (AE015928.1), B. ovatus
(CP012938.1), Barnesiella viscericola (GCA_000512915.1), and Porphyromonas gin-
givalis (GCA_000010505.1), were also downloaded from GenBank.

3.5.4 Genome annotation

All genomes were initially annotated with Prokka [61] version 1.13, which uses Prodi-
gal [62] for gene finding. Putative protein sequences were additionally annotated with
domains from both the dbCAN database [23] release 6 of carbohydrate-active domains
and Pfam [63] release 31.0, using HMMERS [64, 65] version 3.1b2. Protein sequences
were also annotated with KO numbers by BLAST using the KEGG database as of
March 2018 as the reference and taking the best hit with a maximum E-value of 1e-10.

Lipoproteins were predicted using LipoP [66] (version 1.0a) and a score cutoff of 5
and a margin cutoff of 2. Lipoproteins with an arginine at position +2 relative to the
cleavage site were labeled as localized to the inner membrane. Periplasmic proteins
were identified with SignalP [67] (version 4.1). Predicted protein sequences from all
annotated genomes were locally all-by-all aligned using the DIAMOND implementa-
tion of the BLAST algorithm [68]. Each pair was then assigned a similarity value
as the bitscore of their best local alignment normalized by the greater of the two
self-alignments. This results in a matrix of pairwise scores reflecting the proximity
to perfect homology. Scores less than 0.2 were replaced with 0. Clusters were formed
using the MCL algorithm [69] with an inflation parameter of 5.

SusCDEF homologs were identified based on relatively relaxed criteria, harnessing

OPF assignments, domain predictions, and Prokka annotations to avoid false nega-
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tives while maintaining specificity. For each OPF, all KOs assigned to members were

collected as plausible KOs for the cluster. Protein sequences in OPF clusters which

included K21572 were flagged as putative SusC-homologs, as were sequences directly

annotated as such by Prokka. Using a similar approach, proteins in clusters tagged
with K21571 or with any of domains PF12771, PF14322, PF12741, PF07980 were
identified as putative SusD. Proteins in clusters tagged with K21571, or with either
PF14292 or PF16411, were considered SusEF homologs. PULs were identified by a
SusC-homolog with its start codon within 5 kbp of a SusD-homolog’s start on the

same strand. Manual inspection supported the vast majority of these identifications.
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CHAPTER 4

Experimental considerations for spike-in
quantification of absolute abundance in

microbial ecology

4.1 Background

The central role of bacterial communities in processes as disparate and important as
global geochemistry, waste-water treatment, and human digestion is undisputed. Con-
temporary approaches to understanding these often complex and cryptic ecosystems
rely heavily on culture-independent, sequence-based surveys of taxonomic marker
genes, most notably the 16S rRNA gene [1]. In studies of human health, these meth-
ods have yielded discoveries of associations between community composition and nu-
merous biological outcomes including colorectal cancer [2, 3], obesity [4], psoriasis [5],
and autism [6]. Despite this progress, demonstrating mechanistic roles for bacteria in
health and disease remains a major challenge.

One barrier to moving beyond simple associations is the disconnect between mea-
surements of community makeup obtained from community surveys and the under-
lying microbial population size. Due to variation in quantities of biological sample,
variation in DNA extraction and amplification efficiency, gene copy number variation,
and library normalization, the number of reads recovered from a particular taxon is
only meaningful when normalized to library size and treated as a proxy for relative
abundance [7]. Such measures always sum to 100%, a feature of this type of data
termed “compositionality” [8]. However, metabolic rates, toxin production, and mi-
crobial biomass, for instance, should be expected to scale with absolute abundance
rather than relative abundance of the relevant taxa [e.g. 9, 10]. When total commu-
nity size is not constant, changes in composition do not necessarily reflect equivalent

changes in cell counts or biomass.
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To escape this limitation, direct cell counts, biomolecule quantification, and
qPCR, have been used to transform relative abundance data to a proxy for abso-
lute abundance [methods compared in 11] However, each of these methods requires
additional processing for every sample, which can be expensive, time intensive, and
consume valuable sample material, explaining the rarity of these approaches in pub-
lished studies.

Recently, an alternative approach has been proposed, here referred to as spike-in
quantification [12, 13]. By adding known amounts of a recognizable DNA sequence
to samples before extraction, the total size of the endogenous community may be
estimated based on the recovery of this foreign sequence. While demonstrations of
this method have been published, standard protocols for sample handling, spiking,
and bioinformatic processing have not been proposed.

Here we discuss spike-in quantification and argue for its broader application in
microbial community analysis. This chapter introduces a conceptual framework for
the approach motivating its application and forming a basis for future developments.
Towards this end, a brief review of relevant literature is included, along with several
new experimental results, as well as observations from the author’s experience with
its application. Section 4.2 explains the shortcomings of compositional data as well
as current methods for the estimation of absolute abundance. Section 4.3 provides
a conceptual overview of spike-in quantification, describes the risks, and shares new
experimental data demonstrating the robustness of the approach to several plausible
sources of technical variability. Section 4.4 presents a comprehensive set of suggestions
for spike-in quantification protocols. And Section 4.5 describes remaining challenges
not solved by spike-in quantification.

By leveraging spike-in quantification, sequence-based microbial community sur-
veys can be closer aligned with biological reality, enabling mechanistic insights inac-

cessible to current techniques.

4.2 Limitations of existing approaches

Contemporary approaches to microbial community analysis are largely grounded in
high-throughput sequencing of whole-community 16S rRNA gene libraries. The data
generated by these methods are analyzed and interpreted in units of percent or frac-
tional abundance of individual taxonomic marker genes, a proxy for the relative abun-
dance of organisms in the initial sample. Such measures of relative abundance always

sum to 100%. For this reason, increases in the abundance of one taxon are necessarily
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Figure 4.1: Conceptual overview of spike-in quantification. Protocols begin with
the addition of a spike reagent containing a known abundance of foreign genes (green
lines) to a sample containing an unknown abundance of endogenous genes (red and
blue lines). Both experience the same extraction, amplification, and sequencing steps.
After sequencing, a smaller relative abundance of spike reads corresponds with a larger
endogenous community size. Changes in total abundance can limit inferences drawn
from relative abundance measurements. When comparing the abundance of genes for
the blue taxon in a sample with increased total community size (bottom series) to a
reference (top series), a decreased relative abundance may counterintuitively coincide
with a greater actual density of that taxon. Mathematical expressions describe the
ratio between the abundance of endogenous (y,) and spike genes (y,) at each step,
based on the various A coefficients, which describe the cumulative extraction (A®)),
amplification (M%), and sequencing efficiency (A(%*)) of the spike and endogenous
genes, independently. These are reduced to a single calibration coefficient, A, in the
final formula. The absolute abundance of endogenous bacteria can be estimated from
the read counts of endogenous (z,) and spike (z,) genes.
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linked with decreased relative abundance of one or more others, and changes in rela-
tive abundance should not, on their own, be interpreted as changes in the population
density of that organism.

While, microbial community analysis has adapted to the compositionality of am-
plicon survey data by adopting the appropriate statistical tools and carefully limiting
interpretations [14, 15], it is unclear whether relative abundance is generally relevant
to the biological processes carried out by bacteria. Instead, metabolic rates likely scale
with the actual density of organisms in the sample, and not their relative abundance.
Inference is particularly handicapped in scenarios with systematic differences in total
community size, for instance studies on the effect of antibiotic treatment [16] or probi-
otic supplements [17]. Additionally, the goal of inferring ecological interactions from
community survey data is hindered by implicit negative correlations in relative abun-
dance [18]. Available approaches either ignore this systematic problem [19] or depend
on prior belief about the sparsity of interaction networks [20-22] to circumvent the
limitation.

Changes in relative abundance should only be interpreted as changes in popu-
lation when additional information about total community size is available. Total
bacterial density can be directly estimated using a variety of methods including
direct cell counts|[23-26], qPCR for ubiquitous genes [27, 28], or quantification of
biomolecules [11, 29-32]. These approaches have been particularly popular in bio-
geochemistry, where bacterial biomass and metabolic activity are often inputs to
predictive models [e.g. 10, 33, 34]. In studies of host-associated microbial commu-
nities, however, where metabolic models are less common, quantification methods
have only been applied in a limited number of studies [24]. This may be due to the
significant additional time and expense required.

Compared to most other options, qPCR is a relatively simple solution as it can
be performed on the same DNA extracted for community sequencing. However, such
quantification of community size depends crucially on the constant efficiency of ex-
traction itself. Extraction efficiency varies between protocols [35] and commercially
available DNA extraction kits commonly used for community analysis are not de-
signed for quantitative extraction; i.e. the concentration of DNA extracted is not nec-
essarily proportional to the quantity of DNA in the initial sample [27]. Differences
in lysis across taxa is a well accepted feature of community extraction protocols [36].
Additionally, PCR amplification is inhibited by a variety of compounds that are not
removed during DNA extraction and may be found in variable concentrations across

samples [37]. As an added challenge, measuring the mass or volume of the small
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sample aliquots that DNA is extracted from is not trivial, adding measurement error
when normalizing absolute abundance to the sample quantity in order to get a com-
parable measure of population density. These technical limitations do not detract
from the use of marker gene surveys as a proxy for relative abundance as long as
differences in extraction efficiency between samples affect all taxa equally.
Measurement of total community density based on qPCR, however, do depend on
a constant extraction efficiency and accurate measurement of sample quantity across
samples. These assumptions may be systematically violated. In particular, methods
dependent on the binding of DNA to a silica surface inevitably saturate [38, 39],
where increasing input biomass does not result in proportional increases in extracted
DNA [observed in e.g. 40]. The sensitivity of total yields to modifications of silica
column-based steps suggests that this may affect standard extraction protocols [41].
In a study of five human fecal samples, approximately doubling extracted sample
sizes from near 50mg to near 100mg resulted in less than proportional increases in
estimated 165 rRNA gene abundance for all five samples (see Figure 4.2 panel A).
If this reflects saturation of DNA extraction capacity, then the discrepancy is likely
much larger at the kit recommended input mass of 250mg. While more comprehen-
sive experimentation will be needed to understand these limitations, this observation
suggests that qPCR-based community quantification does not necessarily reflect the

true abundance of bacteria in the sample.

4.3 Spike-in quantification for studying microbial

absolute abundance

Spike in quantification is carried out by adding known amounts of a recognizable DNA
sequence to samples before extraction. The total size of the endogenous community is
then estimated from the composition of sequences, leveraging the relationship between
the fraction of the mixed community made up by the spike and the fraction of spike
reads recovered after sequencing.

The formula to estimate, y,, the absolute abundance of endogenous genes in the

initial sample is

g, = A" (4.1)

Zs

where z, and z, are the read count for endogenous and spike genes, respectively,
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and y, is the known abundance of the spike. The term y, can further broken down
into the volume v, and concentration c, of marker genes in the spike. y, is only rarely
studied directly; instead, considering the density of bacteria in the original sample,
d, = y,/m,, enables comparison of samples with arbitrary differences in input sample
weight.

The formula for estimating this density is therefore,

d, = )\ﬁ (4.2)

The calibration coefficient, A\, represents the proportional recovery of the spike
genes relative to endogenous genes, accounting for biased extraction, amplification,
and sequencing, which affect counts of each (see Figure 4.1). Since this coefficient is
not known a priori—indeed, it may vary between experiments—it must be determined
through calibration in order for values to be considered estimates of abundance. Al-
ternatively, estimates of d,/A can be compared across samples and scale-invariant
inferences about absolute abundance (e.g. “the absolute abundance is 2-fold higher”)
can still be made. Here, we refer to these uncalibrated measurements as “spike-
adjusted density” since they are all scaled by the unknown A~!. Given a constant
spike concentration, c, can similarly be consolidated into the calibration coefficient,
A" = Acg, obviating the need for careful quantification of the spike.

This rearranged formula for spike-adjusted density is

D
£ == 4.3
- (1.3)

Formulas related to the above are used in Chapter 2, as well as by both Stamm-
ler et al. [12] and Smets et al. [13].

Valid interpretation of a?e (as well as d /A A’) depend on the calibration coefficient
being constant across samples. To test this assumption for human fecal communities,
spike-adjusted 16S gene abundance was compared to estimates obtained using qPCR.
If A\ differs by sample, little or no correlation between these two, independent mea-
surements is expected. Instead, we find a tight relationship between log estimates (r
= 0.96, see Figure 4.2 panel B) supporting the consistency of spike-in quantification.

These results reinforce similar, previously published findings in soil [12, 13]. While

testing this under different experimental conditions is outside the scope of this chap-
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ter, confirming the constancy of A for new sample types, extraction kits, and choices
of spike will strengthen future results using the approach. It is also unclear if com-
parisons of absolute abundance across multiple sample types are valid.

By adding the spike before extraction, spike-in quantification theoretically controls
for variability in DNA extraction efficiency. However, the known saturation effects
of silica column-based protocols raise the possibility that the recovery of spike and
endogenous genes is differentially affected by changes in the amount of input sample

used. This would result in a dependency of A on m_, violating the assumption that

e
this coefficient is constant. We tested this possibility by comparing spike-adjusted
density estimates across a wide range of input amounts (see Figure 4.2 panel C).
While one sample did appear to have a monotonic relationship between the estimated
density and input mass (Spearman’s p = 0.74, p = 0.001), this relationship was
driven by increased estimates in replicates with 25 mg input mass—much less than
the protocol’s specification—where physical heterogeneity of the sample might have
impacted the accuracy of results. The four other samples showed no such relationship

(p > 0.05).

4.3.1 Biological inference with absolute abundance data is

non-trivial

While studies of community composition inherently limit the types of biological in-
sights that can be obtained, the simplicity of generating relative abundance data has
undoubtedly contributed to its widespread application. Several of the elegant features
of compositional data are necessarily lost when scientific question require information
about bacterial density.

One such feature: relative abundance is invariant to changes in sample mass.
Whereas the quantity of sample being studied can be ignored in compositional studies,
absolute abundance data is naturally interpreted in terms of population density, e.g.
gene copies per gram of sample. This means that abundance estimates must be
normalized to sample quantity, and measurement error in m, directly contributes to
error in the density estimate, dAe. What’s more, the choice of units for sample quantity
becomes an important decision. Studies of the gut microbiome, for instance, must
now choose between per wet weight, per dry weight, or per volume bases for analyzing
and reporting density. This is a non-trivial decision and has major implications for
interpretation. Changes in material composition of the sample (e.g. hydration level,

fiber content) will directly affect normalized measurements, and this may or may not
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have biological importance. General recommendations for choice of basis are outside
the scope of this chapter and depend heavily on the relevant biology.

To go from composition to the absolute abundance of individual taxa, relative
abundance can be scaled by a measurement of the total community size to get an
estimate for the actual abundance of individual taxa [11]. This has two important
consequences that must be considered when analyzing these data. First, such esti-
mates of absolute abundance necessarily lose precision since they compound noisy
estimates of relative abundance with noisy estimates of absolute community density.
Second, this latter source of noise is shared by all taxa in the sample. Consequently,
correlations in the density of taxa will be artificially inflated, with noisier estimates
resulting in stronger correlations. This confounder is circumvented by measuring taxa
independently, most commonly with specifically designed qPCR primers [42]. Unfor-
tunately, this means that untargeted, exploratory analyses are generally not possible,
handicapping attempts to reconstruct complex ecological networks from correlation
data.

Despite these limitations of all methods for the estimation of absolute abundance,
spike-in quantification presents an attractive opportunity to introduce this valuable

perspective to a broad range of studies in microbial ecology.

4.4 Optimizing spike-in quantification protocols

In this section factors affecting the accuracy and interpretability of spike-in quantifi-
cation experiments are discussed. Guidelines and best-practices are proposed based
on our experience working with human and mouse fecal samples. The major deci-
sions in designing protocols revolve around the choice of what, when, and how much

to spike.

4.4.1 What to spike

Previously published demonstrations of pre-extraction spike-in quantification have
utilized intact bacterial cells as the spike. This means that the spike itself is exposed to
the same extraction bias and variability as the endogenous community. Alternatively,
a cell-free, DNA standard may be used, ensuring that spike recovery is independent
of lysis efficiency. It is not yet clear which approach better maintains the constant
proportionality between spike and endogenous sequence recovery—constant A is the

necessary feature for accurate quantification.
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Figure 4.2: Accuracy and robustness of gPCR and spike-in quantification
Accuracy and robustness of qPCR and spike-in quantification. (A) Comparison of
sample mass ratios and 16S rRNA gene abundance estimates obtained using qPCR on
DNA extractions from human feces. Points correspond with individual human fecal
samples from five different subjects. Horizontal position of points indicates ratio of
smaller and larger mass portions of same sample. Vertical position indicates the
ratio in 16S rRNA gene abundance in final DNA extract, quantified using qPCR.
The dotted line reflects the theoretical expectation of proportionality. Points under
the line correspond to lower than expected estimates from larger fecal samples. (B)
Comparison of estimated endogenous 16S rRNA gene density calculated using two
independent methods. Points correspond with individual human fecal samples from
five different subjects. Error bars represent standard deviations of log estimates
from each method, and line of best fit (dashed) is shown. (C) Relationship between
quantity of sample extracted and estimates of 16S rRNA gene density obtained from
spike-in quantification. Points correspond with individual extractions, colored to
indicate which fecal samples out of five, each from different human subjects. Dashed
lines indicate the mean estimated gene density across all extractions for each sample.
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In either case, the chosen spike sequence must be easily distinguished from all en-
dogenous bacteria, while maintaining affinity for the PCR primers employed for am-
plification and sequencing. Cell-free DNA standards with appropriate primer binding
sites can be constructed that differ from all known bacteria [43]. Alternatively, care
must be taken with a cellular spike to ensure that sequences are not shared with
endogenous members of the community. This means that no one cellular spike is
appropriate for all possible experiments, although reasonably large subsets (e.g. all
mammal associated microbiome studies) can share an appropriate standard.

For accurate comparison, the spike itself must also be kept identical for all samples.
This standardization encompasses both the concentration of the spike reagent as well
as the physical properties of the spike itself. This can be challenging for a cellular
spike, as small variations in culture conditions can have a large impact on bacterial
population density and physiology and therefore both gene density (due to genome
copy number variation [44, 45]) and extraction efficiency (due to changes in cell wall
physiology [46]). For a cellular spike, the use of a single batch of well-mixed bacterial
culture is recommended to minimize variation between samples. Care must also be
taken to ensure that cellular spikes are homogeneous over the volumetric scales being
used, as large aggregates of cells can introduce substantial differences in the number of
spike gene copies transferred. Standardizing the spike across studies has the potential
to facilitate comparison, and a large culture volume can be aliquoted and stored for
multiple experiments. Comparisons across studies using separately produced cellular
spikes requires careful calibration for each. Standardization is easier when using a
cell-free spike since DNA concentrations can be accurately measured [47].

Given the increasing application of metagenomic approaches, spiking in order to
quantify total community size has implications for the simultaneous usability of DNA
extractions for shotgun sequencing. While the addition of whole bacterial genomes
means that these sequences also contaminate metagenomic libraries, if the spiked
organism has been sequenced, reads can be removed by mapping to that reference.
Alternatively, a cell-free, non-genomic spike greatly reduces the total number of spike
reads in the metagenomic library. However, spike in approaches to quantification
in metagenomics have also been explored [48], and the two can be integrated. In a
dual analysis, we have observed accurate assembly of the genome of a cellular spike,
lending confidence to other assemblies in the same study.

One option not covered in this work, but that has been previously explored [12],
is the simultaneous use of multiple spike sequences. Studies could potentially benefit

from features of both a cellular and cell-free spike. Dual spikes also provide an
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internal check that recovery is proportional for each sequence across all samples.
Analysis procedures for mixed spikes that take advantage of this internal control and

improved precision have not yet been developed.

4.4.2 When to spike

Regardless of the choice of spike, choosing when to spike has important impacts on
the accuracy and interpretation of quantification. While a cell-free spike can be added
after DNA extraction, this limits the value of the approach in controlling for extrac-
tion variability. Indeed, spiking as early as possible in sample processing, even right
at the time of sample collection, could present both logistical and experimental ben-
efits. Spiking early improves quantification because both spike-volumes and sample
quantities can be more accurately measured. Volumetric variation in aliquoting small
quantities of fecal samples for extraction is a potentially large source of error, and
individually weighing those aliquots can be logistically challenging.

Spiking early has two downsides: the contamination of potentially precious sam-
ples with foreign cells or DNA, and the need for larger quantities of spike reagent.
We have not found these to be problematic in practice, but the trade-offs should be

assessed on a per-study basis.

4.4.3 How much to spike

While the number of reads sequenced by high-throughput approaches has increased
greatly in the past five years, this is still an important limitation on the number of
samples included in community analysis studies, and also impacts the detection of
rare taxa [49]. For this reason, the amount of spike added to each sample must be
calibrated in order for an appropriate number of reads to be recovered. Adding too
much spike can impact the recovery of rare taxa, or even swamp out the endogenous
community entirely. On the other hand, recovering too little spike increases the
impact of binomial sampling error on abundance estimates. At an extreme, when no
reads of the spike are recovered for one or more samples it is impossible to use the
Equation 4.2 to calculate dAe.

As has been previously reported in molecular surveys [15], the number of spike
reads recovered is overdispersed—more variable than would be predicted by an ideal-
ized binomial distribution. At higher counts, therefore, sampling error is dominated
by overdispersion, and the optimal number of spike reads is not as dependent on the

total number of reads sampled. Although not tested extensively, in our experience
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recovering 100 spike reads has been sufficient, and increasing the spike beyond this
point does not seem to improve the accuracy of estimation. In a library of 10,000
reads, this means that only 1% of the data is “lost” to spike reads. The challenge is
ensuring approximately this number of reads when both library size and the density
of endogenous bacteria vary. In our experience, uncertainty in library quantifica-
tion prior to multiplex sequencing can result in approximately 2-fold differences in
the number of reads per library. Aiming for additional spike reads can reduce the
negative impacts on inference of this variation, while still wasting relatively little
sequencing capacity. Much more challenging is the calibration of spike quantity in
cases where endogenous bacterial densities may vary over multiple orders of magni-
tude, such as antibiotic treatment experiments [50-52]. When population sizes can
be predicted before extraction, calibrating the amount of spike in order to recover
approximately 100 reads is recommended. In other cases, first estimating densities in

a subset of samples using qPCR or other methods will be valuable.

4.4.4 Analyzing sequence data from a spike-in quantification

study

Once samples have been spiked, processing can proceed identically to standard com-
munity analysis up through digitization and demultiplexing of read libraries. Spike
reads may then be counted and removed either before or after the standard bioinfor-
matic pipeline. When spiked sequences are sufficiently similar to naturally occurring
genes, counts can be partitioned directly from final, tabular outputs, since they are
treated identically to endogenous taxa. This may not be the case, however, for syn-
thetic sequences, which need only share primer binding sites with naturally occurring
genes. Popular amplicon analysis pipelines, including MOTHUR [53] and QIIME [54],
filter reads by length and alignment to reference databases. Therefore, synthetic se-
quences used as a spike may need to be counted and removed prior to other processing.
Such spike reads will ideally be unambiguously identified by BLAST alignment to a
reference sequence. Choosing alignment length and identity cutoffs to filter on with
high sensitivity and specificity for the spike is an important consideration. Exam-
ining the impact of spike read processing on inferences is outside the scope of this

manuscript.
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4.5 Limitations in interpreting spike-in results

While the above guidelines for designing spike-in experiments enable fruitful appli-
cation for quantification, in both our experience and in published studies [12, 13]
measurement, error with the approach can be large. However, even direct measure-
ments may have similar levels of measurement error [11], and a variety of future im-
provements will undoubtedly increase the applicability and accuracy of the method.
Measuring the calibration coefficient, A\, across sample types and protocol variations,
as well as systematically optimizing the choice of spike and identifying one that can
be obtained cheaply and reproducibly, will enable comparisons across studies.

Importantly, naive analyses of spike-in quantification data are potential problem-
atic. Given the ease with which point-estimates of absolute microbial density can be
calculated from spike-in count data, traditional statistical tests operating directly on
these point estimates are an attractive option for the analysis of such experiments.
Point estimates are limited, however, by the discreteness and sparsity of count data.
In particular, samples for which no reads of the spike are recovered are a critical
challenge, since density estimates are therefore undefined. While such samples could
be excluded from analysis, low spike recovery suggests high microbial abundance.
Excluding such samples would therefore operate non-randomly, biasing statistical es-
timation.

One option is to use pseudocounts, adding 1 to every cell in the count matrix,
prior to calculating point estimates. This has two effects. First, absolute abundance
estimates based on pseudocounts are defined and non-zero for all taxa in all samples.
Second, pseudocounts implicitly bias abundance estimates. Fortunately, samples with
high spike recovery are only minimally affected, reflecting their greater theoretical
precision.

A statistical approach designed to natively handle the challenging features of this
data type is described in Chapter 5.

4.6 Conclusions

In this chapter, the utility of spike-in quantification in microbial community anal-
ysis has been described. We believe that the approach should be considered in a
substantial fraction of future studies. While qPCR and other direct quantification
approaches are also valuable, the simplicity and low cost of spike-in quantification

enables examination of absolute abundance in studies where it has previously been
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ignored.

A breadth of experimental considerations have been discussed that impact accu-
rate and reproducible use of spike-in quantification, and a number of best practices
for choosing a spike, designing protocols, and analyzing the resulting sequence data

have been recommended.

4.7 Methods

4.7.1 Sample collection

Two fecal samples from each of five separate individuals were collected using the
OMNIgene-GUT microbiome sampling system (DNAGenotek). Tubes containing col-
lection buffer were weighed before and after sampling. Paired samples were mixed well
and combined into a single slurry per-individual. Aliquots of these slurries reserved

for qPCR-based quantification were frozen at -20 before further processing.

4.7.2 Extraction and qPCR for direct quantification

For each slurry, DNA from weighed subsamples of approximately 50 and 100 mg was
extracted using the DNeasy PowerSoil Pro (Qiagen Ref 47104) DNA extraction kit,
with final elution into 50 uLof water. The abundance of 16S rTRNA genes in these
DNA samples was quantified by qPCR with the Qiagen QuantiTect SYBR Green
MasterMix on the Roche LightCycler 96 platform. Terminal melt curves between 65
and 97 were used for validation. Escherichia coli genomic DNA (Sigma D4889) was

used as a quantification standard and positive control.

4.7.3 Spike reagent

All spikes were done with a raw DNA spike prepared by the Institute for Life Science
Entrepreneurs. This DNA construct is 372 bp long with concatenated standard 16S
rRNA gene primer binding sites on either side, of a 48 bp synthetic “ID Tag” sequence.
Two distinct constructs were obtained from ILSE at 1 x 10® copies / uLand combined

in equal proportions to a final concentration of 5 x 107 copies / uLof each.

4.7.4 Demo experiments

Demonstration spike-in quantification experiments were performed on all five human

fecal samples, using one or more of three slightly different procedures. For “Series
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A” approximately 2.6 mL of samples S1, S3, and S4 were transferred to fresh tubes,
weighed, and 26 pLof the mixed spike reagent was added to each. These slurries were
then aliquoted into the extraction plate in one or more replicates at approximately
400 pL, 200 pL, 100 pL, 50 pL, and 25 pL. Transfers greater than 100 pLwere directly
weighed to account for pipetting error. For smaller volumes, weights were estimated
from an estimate of slurry density. For “Series B”, approximately 1 mL of S2 and S5
were transferred to fresh tubes, weighed, and 10 pLof mixed spike reagent was added
to each. Approximately 100 puLof this mixture was then aliquoted into the extraction
plate with at least 4 replicates of each. For “Series C”, remaining unspiked slurry
from samples S1 through S5 were aliquoted in individually weighed approximately
200 pLincrements into the extraction plate.

Where appropriate, results from all three procedures were pooled together for

analysis.

4.7.5 Extraction, sequencing, and bioinformatic processing

Extraction was performed with the Qiagen PowerMag Microbiome kit. The V4 hy-
pervariable region of the 16S rRNA gene was amplified as described in Chapter 2.
Amplicons were then sequenced on an Illumina MiSeq using MiSeq Reagent Kit V2
500 cycles.

Paired-end sequences were fused using MOTHUR [53]. Spike reads were identified
with BLAST [55] against their reference sequences using a 95% identity threshold,
minimum alignment length of 150 positions, and a maximum alignment length of
300. Reads from both spike sequences were combined into a single spike tally. Read
libraries were processed using the MOTHUR pipeline based on the 16S standard

operating procedures [506].
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CHAPTER 5

A novel, model-based approach for
inference on microbial absolute abundance

leveraging spike-in quantification data

5.1 Background

Community surveys harnessing the 16S rRNA gene have been the central tool in mi-
crobial ecology for more than a decade [1], enabling the discovery of associations be-
tween bacterial composition and experimental or observed covariates, and has driven
exciting discoveries related to the human microbiome [2-4] and other fields. How-
ever, traditional community surveys are unable to conclusively demonstrate changes
in absolute abundance of individual bacterial taxa, and analyses must instead de-
pend on compositional, relative abundance data. Microbial ecology has adapted to
this shortcoming by adopting appropriate statistical tools [5—12]. Unfortunately, some
of the key inferential goals of community ecology are inaccessible without absolute
abundance information, in particular predicting metabolic impact and characterizing
interspecific interactions [13].

Despite the inherent limitations of relative abundance data in the analysis of mi-
crobial communities, methods intended to directly measure absolute abundance, such
as qPCR, have found only limited use. This may be because of technical challenges
in accurately and efficiently scaling these protocols to the potentially hundreds of
samples considered in sufficiently powered studies.

Recently, spike-in quantification has been proposed as an alternative approach [14,
15], enabling simple estimation of the abundance of taxonomic marker genes serving
as a proxy for the absolute abundance of microbes. In this protocol, a known amount
of an identifiable marker gene sequence is added to samples before processing. After

collecting sequence data from the mixed sample, the gene density of the endogenous
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microbial community, d, may then be estimated with the formula

A 2,0,C
d=\"—""= (5.1)
Zsme
where z, and z, is the read count for the spike sequence and endogenous sequences,

respectively, v,, and c, are the known volume and concentration of spike sequence

s
added, and m, is the known mass of the sample being analyzed. The density of
individual members of that community can then be estimated by scaling relative
abundance by d.

While under an idealized scenario the estimate of d becomes precise as total read
counts increase, for finite library sizes the discreteness of counts and binomial error
of sampling z, and z, introduce noise. In addition, excess error introduced by sample
heterogeneity, and the variability of extraction, PCR, and sequencing, reduces the
accuracy of these point estimates. Statistical analyses that operate directly on ci,
therefore, fail to appropriately propagate this uncertainty. In addition, measurement
error likely deviates from the distributional assumptions implicit in common statistical
procedures such as ANOVA and linear regression.

In this paper an integrated model for microbial abundance and spike-in quan-
tification is developed and applied to the analysis of experimental data, leveraging
this recently demonstrated protocol for improved inference of microbial community
dynamics. In Section 5.2 a probabilistic model is described for the abundance of
microbes as well as count data resulting from spike-in quantification of multi-species
samples. In Section 5.3 a software tool, SpikeAbund, is introduced for fitting this
model to real data and to enable inference on model parameters under a Bayesian
framework. In Section 5.4 simulated data is used to compare the performance of
SpikeAbund to naive analysis methods. In Section 5.5, SpikeAbund is applied to the
analysis of real data in order to identify bacteria residing in the guts of mice that
are affected by treatment with the o-glucosidase inhibitor acarbose. Finally, in Sec-
tion 5.6, we criticize the model using these data, and consider an extension that may
better reflect reality.

Spike-in quantification has the potential to better align marker gene surveys with
biologically relevant features of microbial communities. Given the complexity of the
resulting data and the potential for deviations from distributional assumptions, tai-
lored statistical procedures are needed to enable correct and efficient interpretation.

This model-based approach to inference leverages spike-in quantification for novel
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insights, and presents a platform for further exploration of microbial community dy-

namics.

5.2 A statistical model of community abundance
and spike-in quantification

In this section a plausible data generating process is introduced for count data from
a spike-in quantification procedure on samples from experimental or observational
studies in microbial systems. Potential modifications of the model which may better
describe reality are also discussed.

As with other sequence-based surveys of microbial communities, the raw out-
put from a spike-in quantification experiment is multivariate count data, which may
contain zeros, and is implicitly correlated due to compositionality. The Dirichlet-
multinomial (DM) distribution [16] has been successfully used to model such data
both in microbial [17-19] and other ecology [6] and in numerous other fields [20].
Due to its relationship with the multinomial distribution, the DM natively accommo-
dates properties of this data type, while accounting for overdispersion as a Dirichlet
mixture [21].

The DM is used to describe the distribution of counts for k sequences and the
spike. For ease of interpretation, here we parameterize the underlying Dirichlet with
a vector II on the k-simplex, which defines the expectation for each element, and a
scalar @ determining the concentration. The more commonly used parameterization
is obtained from the product of these two. As « increases, the DM approaches a
multinomial distribution; finite values of « therefore describe the overdispersion (or
“clumpiness”) of real, biological data, which in amplicon libraries may be due to
sample heterogeneity, extraction variability, and PCR dynamics.

The fraction of each read is then specified by II a deterministic transformation of
the latent abundance for each sequence, y;, accounting for the addition of a known
quantity of spike sequence, s. Here, an independently distributed, normal, linear
model for the log-abundance of each taxon is used. The effects of covariates x,
through x, on taxon log-abundance are described by the parameters 3; through S
with baseline log abundance fj,.

The full likelihood model for sample :
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With read counts and a known abundance of spike in each sample, latent taxon
abundances, y,;, are constrained. This enables estimation of model parameters. Of
particular interest are the values of §;; which represent the effect of covariate k on
the abundance of taxon j.

Several elements of this model are obvious candidates for modification when bi-
ological reality deviates. In particular, the linear model for mean log-abundance
allows for latent abundances with no upper limit or saturation. Likewise, the mul-
tiplicative noise means that highly abundant organisms may fluctuate to still higher
abundances. These features are implausible in microbial communities that are, at a
minimum, subjects to spatial constraints on maximum population size. Functional
relationships between covariates and abundance that better describe reality, in par-
ticular those that account for this necessary saturation, may be provide an improved
description of reality.

The model proposed here also ignores interactions between taxa by drawing abun-
dances from independent distributions. At the simplest extreme, introducing co-
variance between taxa by modeling latent abundances as draws from a multivariate
normal distribution may sufficiently approximate this biology. In addition, the DM
distribution constrains the stochastic processes generating count data from underlying
abundances; for example, elements with the same mean always have the same vari-
ance. Replacement of the sampling model with more general covariance structures, for
example the generalized Dirichlet multinomial [21], could better fit observed counts.

In the following sections we describe the use of this model for the analysis of
both simulated and real data. An iterative process of building and criticizing models
with available data has the potential to improve our understanding of microbial com-

munities. By directly modeling spike-in quantification results, new insights can be
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obtained into microbial community dynamics that are not available in compositional

datasets.

5.3 SpikeAbund is a command-line tool for the

analysis of spike-in quantification data

By leveraging this integrated model of spike-in quantification for the analysis of data,
the values of various parameters may be interrogated. A Bayesian framework enables
intuitive interpretation, while natively handling the large number of latent parameters
in the model. This approach to spike-in data analysis is packaged as the software tool
SpikeAbund that can be run on Linux, Windows, or macOS. Code and documentation

are made freely available.

5.3.1 Inputs

SpikeAbund takes a matrix of taxonomic marker gene counts that can be produced by
a variety of widely used amplicon library analysis software, including MOTHUR [22]
and QIIME [23]. A second, metadata file is also required, with the values of observed
and experimentally controlled covariates. This file should also include the normalized
spike-in amount for each sample, representing v,m_* (see Formula 5.1). Normaliza-
tion of the spike input to sample mass or volume is crucial for interpretation the
model in terms of microbial population density, and is appropriate for most uses. If
users have calibrated their spike protocol, Adv,c,m_! may be used instead, and the
values of 3, can be interpreted as the true gene density, rather than spike-adjusted
densities. This will not affect other 3 terms.

Users may also specify the linear model relating covariates to abundance, and
identify which column of the counts table represents the spike sequence. The pri-
mary output of the program is a summary of the marginal posterior distribution for
each model parameter. A full MCMC chain can also be saved for downstream analy-
sis. Advanced visualization and inference may be carried out in the fully interactive

[Python environment by making use of %run magic.

5.3.2 Priors

Priors were selected to be weakly informative. A normally distributed prior was cho-

sen for the log of the concentration parameter, o, with a standard deviation of 10. A
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normal distribution was also selected, with mean 0 and (by default) a standard devi-
ation of 10, for 8. For binary covariates, this prior corresponds with approximately
68% of abundance effects being within an approximately 22000-fold change, keeping
parameters within a manageable range even in cases where data does not constrain
belief, but having a negligible effect when sufficient data is available. This prior
becomes more influential as the magnitude of the covariate is increased. Standard-
ization of covariates is therefore recommended. Alternatively, the standard deviation
of this normal prior may be increased to lessen the potential for biased inference, or
may be decreased, implying skepticism of large effect sizes and regularizing parame-
ter estimates. Checking the sensitivity of inference to the value of this user-defined
parameter is recommended. Future versions of SpikeAbund will explore alternative

prior distributions.

5.3.3 Implementation

Bayesian inference of parameters based on this approximate model is made available
as a software tool written in python and heavily utilizing the PyMC3 package for
probabilistic programming [24]. The linear model relating covariates to the expected
log-abundance of each organism may be specified using R-like formula notation as
implemented by the python package Patsy [25]. The No-U-Turn Sampler [26] is
used for efficient Markov chain Monte Carlo (MCMC) sampling from the posterior

distribution, and inference is performed directly on this posterior samples.

5.3.4 MCMC convergence and quality diagnostics

Before trusting a simulated posterior, It is important to confirm that MCMC sampling
converges to the target distribution, and that the Markov chain is well-behaved. The
PyMC3 packages implements and automatically performs several standard checks:
flagging potential divergences in the Hamiltonian Monte Carlo error during sam-
pling [27], reporting an estimate of the effective number of samples from the posterior
based on the autocorrelation of the chain, and also reporting the Gelman-Rubin di-
agnostic [28], an indicator of failed convergence. The user is warned when normal
thresholds are exceeded. While not exhaustive, we have not observed cases of failed
sampling where these diagnostics were unable to detect the problem. When these
quality checks are failed, the user has the option to adjust parameters in order to im-
prove sampling. Divergences during sampling can sometimes be resolved by increase

the target accept probability (0.8 by default). Failure to converge can be fixed with
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additional tuning steps (500 by default). And poor mixing can be overcome with
increased chain lengths (1000 by default) or, alternatively, additional chains may be
sampled in parallel (2 by default).

5.3.5 Interpreting posterior distributions

As with other Bayesian approaches to data analysis, rich interpretations may be ob-
tained from the posterior distribution. In particular, this software reports mean pa-
rameter values as well as 50% and 95% highest-probability density credible intervals,
by default.

In order to provide a widely accessible criterion for reporting the effects of indi-
vidual covariates on individual taxa—a role often played by P-values in frequentist
approaches—the posterior probability that the true parameter value has the opposite
sign from the reported mean, known as a type-S error [29, 30], is reported. Users may
instead wish to quantify the posterior probability that a covariate has biological rel-
evance, defined as some threshold effect size. Posterior distributions may be applied

in this way, representing a key theoretic advantage over frequentist approaches.

5.4 Comparison of analysis methods on simulated
data

A standard protocol for the analysis of spike-in quantification data for microbial com-
munities has not yet been established. Here SpikeAbund is compared to two naive
procedures: non-parametric comparison of rank abundance using a Mann-Whitney U
test (here abbreviated as sMWU), and comparison of mean log-abundance using a t-
test (STT). Furthermore, in order to demonstrate the value of spike-in quantification,
two parallel procedures are included on compositional data comparing rank relative
abundance (¢cMWU) and mean log relative abundance (¢TT). The performance of
these procedures is compared on simulations of a relevant experimental scenario. Un-
surprisingly, spike-adjusted abundance outperforms relative abundance for detecting
changes in population size. Evidence is also provided that a model-based approach
to analysis of spike-in quantification data supersedes the other methods both concep-
tually and in practice.

In most sequence-based studies of microbial communities, two goals of statisti-
cal analysis are to identify taxa that are differentially abundant among treatments

and to estimate the direction and magnitude of that effect. The first goal is more
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Table 5.1: Summary of methods for the analysis of spike-in quantification data

Abbreviation | Description Binary infer- | Parameter estimation
ence
cMWU?* MWU test on ob- | P-value n/a
served composition
cTT? t-test on log observed | P-value Difference in mean log
composition relative abundance
sMWUP MWU test on spike- | P-value n/a
adjusted abundance
sTTP t-test on log spike- | P-value Difference in mean log
adjusted abundance spike-adjusted abun-
dance
SpikeAbund® | Dirichlet multinomial | Posterior Mean of the posterior
spike-in counts model | probability of | distribution of £
type-S error

2 Interpretation based on relative abundance
b Interpretation based on absolute abundance

commonly achieved using statistical tests and a P-value cutoff. Effects can then be
calculated from estimates of central tendency, such as differences in mean or median.
Alternatively, for more complicated models, regression-based approaches are often
used.

In order to compare methods for analyzing microbial communities, count data
were simulated from a hypothetical experiment in which the effect of a polysaccharide
prebiotic on gut bacteria is tested. Scenarios like this one may be a particularly
misleading when analyzing relative abundance data. Given the taxon specific, but
generally positive effect of such a treatment on bacterial populations, increases in
the absolute abundance of some taxa can obfuscate changes in others. Treatments
such as antibiotics that decrease total community size should have similar impacts on
analysis.

Performance is compared across the simulated taxa. For clarity, we characterize
these based on the expected number of reads in control samples out of 5,000 simulated
reads: high abundance taxa (Ranks 1 through 14) with greater than 100, moderately
abundant taxa (Rank 15 through 30) with more than 10, low abundance taxa (Ranks
31 through 47) with more than 1, and very low abundance taxa (Ranks 48 and 49)

with expected read counts of less than 1.
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Figure 5.1: Comparison of classification skill across five procedures for the analysis
of changes in taxon abundance. Skill is reported as 1 - false discovery rate (A),
sensitivity (B), Matthew’s correlation coefficient (C) and area under the receiver
operating characteristic curve (D). Points are the skill of the procedure for each
taxon rank (decreasing abundance) across 1,000 simulations. Higher values are better.
Colors correspond to analysis procedure, with three utilizing spike-in quantification,
and two operating directly on relative abundance. Trends are visually summarized
with lowess regression lines.
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Unsurprisingly, procedures designed to find differences in relative abundance failed
to accurately identify real changes in the underlying absolute abundance. For abun-
dant taxa, false discovery rates were greater than 50%. Given the simulated dis-
tribution of true effects, this represents worse performance than the expectation for
random guessing; Matthew’s correlation coefficients (MCCs) are consequently less
than zero for these taxa. This poor performance reflects the mismatch between rela-
tive and absolute abundance. In the very low abundance taxa, cMWU has improved
performance: slightly better than random guessing. To confirm that the performance
of these tests could not be improved by choosing a different P-value cutoff, the re-
ceiver operating characteristic curve across P-value cutoffs was used, comparing the
area under the curve (AUC) for each. An AUC of less than 0.5 demonstrated that
for most taxa in this simulated scenario cMWU and ¢TT performed no better than
guessing.

Next, the classification accuracy was compared of the three procedures designed
to utilize spike-in quantification data, sMWU, sTT, and SpikeAbund. All three per-
formed substantially better than random guessing in abundant and moderately abun-
dant taxa (MCC > 0). For rare and very rare taxa, the accuracy of the two naive
approaches, sMWU and sTT, was moderately lower than SpikeAbund, largely driven
by a much worse FDR. Compared to the other two, the FDR for SpikeAbund was
better controlled in rare taxa, although sensitivity was also lower, correctly reflecting
the reduced information content with regards to these taxa.

To examine our ability to estimate effect sizes from spike-in quantification exper-
iments, the known, true effect parameters are compared to point estimates obtained
from the simulated data (see Figure 5.2). For the most abundant taxa, the mean
squared error of the estimate was substantially lower for both methods that included
spike information, and particularly for SpikeAbund. While the MSE of point esti-
mates from SpikeAbund were much larger for rare taxa, this is apparently due to
inherent uncertainty about the true abundance. Since rare taxa may vary in relative
abundance over many orders of magnitude, while still remaining below the limit of
detection, large relative effects of covariates on abundance cannot be ruled out. De-
spite the inflated MSE, the inaccuracy of these results is appropriately reflected in
the width of the posterior distribution. Across the 50 taxa in 1,000 simulations, true
parameter values were within the 95% highest probability density interval for 94.6%
of them, almost exactly the expected fraction. This suggests that credible intervals

obtained using SpikeAbund reflect a reasonable state of belief given the data.
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Figure 5.2: Parameter estimates made by SpikeAbund vs. two naive methods. True
parameter values are compared to estimates obtained using three analysis methods
(columns) for four taxa (rows) representing high abundance (Taxon 1), moderate
abundance (Taxon 25), low abundance (Taxon 40) and very low abundance (Taxon
50). In each panel, points corresponds to each of 1,000 simulations. Simulations in
which that taxon was identified as significantly differentially abundant are indicated
(blue points). The one-to-one line is shown (black, dashed), as well as a regression
between the true and estimated parameters (red line).
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5.5 Identification of bacteria affected by acarbose

treatment in mice

To demonstrate the utility of this method in the analysis of real data, SpikeAbund
was applied to 16S rRNA gene libraries from 143 fecal samples collected in a previous
study of acarbose in mice (see Chapter 2), in order to identify taxa with density
affected by treatment with the drug. In that data, 105 operation taxonomic units
(OTUs) were “common”: with mean relative read abundance greater than 0.1% and
found in at least 5% of samples. The remaining reads were pooled and treated as a
single taxon. The set of taxa flagged by this approach are compared to results from
MWU tests on the relative abundance of each OTU.

Of the 105 common OTUs in this data, the effect of acarbose on 60 of these was
confidently assessed, defined as a posterior probability of a type-S error of less than
0.05. Of these, 16 were positively and 44 were negatively affected, suggesting that
acarbose treatment was deleterious to more taxa than it was beneficial. Of particular
note, SpikeAbund confirmed that the absolute abundance of OTU-1 increased with
acarbose treatment, and not only relative abundance as reported in Chapter 2. Of
these 60, the naive test on relative abundance reaffirmed the classification for all but
6. Interestingly, for all of these the mean posterior value of the effect parameter was
greater than zero, suggesting evidence for a positive effect of acarbose. Conversely,
the additional 8 OTUs flagged only by the test on relative abundance, all showed
trends towards a negative effect. This may reflect the obfuscating impact of a large
increase in OTU-1 on the ability to detect changes in other taxa when only considering
relative abundance.

One case of particular interest is OTU-49, flagged by SpikeAbund as negatively
affected, where the sign of the inferred effect on absolute abundance contradicts the
apparent positive effect on relative abundance. However, a statistical test of the latter
was not significant and the estimated magnitude was small. The general concordance
between inferences on absolute abundance, using SpikeAbund, and relative abundance
suggest that total community size in this experiment was not substantially affected by
acarbose treatment. While there is not evidence that relative abundance would have
been directly misleading in this experimental system, use of spike-in quantification

enables us to account for this possibility in our interpretations.
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5.6 Model criticism and improvement

The correctness of conclusions drawn from this procedure are dependent on the ability
of the model itself to capture relevant population dynamics. For this reason, model
criticism in light of real data constitutes an important component of the scientific
process.

Towards this end, we compared the marginalized posterior distribution of d for
each sample i (equal to Zj:1 y;;) to point estimates of the parameter (d) obtained
using Equation 5.1. This parameter is a proxy for total 16S rRNA gene density.
For one sample in particular, labeled JL0O836, these deviated substantially (see Fig-
ure 5.3 panel A), with the posterior median nearly two orders of magnitude larger
than dA, and nearly one order of magnitude larger than for the sample with the next
highest value. This unreasonably inflated posterior, along with the generally poor
concordance between point estimates of d and the posterior distribution of the pa-
rameter for other samples, suggests that the probabilistic model developed here does
not perfectly capture the true data generating process being studied.

Further examination of sample JL0836 found that the total number of common
OTUs observed, not counting the spike, was only 12, making it by far the least
taxonomically diverse of the 143 samples. A majority, 58%, of sequences in this library
were clustered into OTU-34, classified as a member of the genus Klebsiella which
includes known opportunistic pathogens. Given this observation, the dominance of
OTU-34 in the fecal community of JLO836 may indicate an active infection that
also resulted in much lower densities of non-pathogenic bacteria in that sample. We
propose that the anomalous posterior distribution of d for this sample reflects a failure
of the model to account for broad correlations in the latent abundances of taxa, y,,
within samples. When these correlations arise, for example due to dysbiosis brought
on by a pathogen, the model does not reflect our a priori understanding of the
system. If this is indeed the problem here, amending the model to account for global
correlations among taxa will better fit the data, and will align estimates of d with
our intuition.

The model was updated by adding a normally distributed, sample-specific term,
7;, to the log density of all taxa:
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where the parameter ¢ describes the strength of the global correlation in taxon
abundance. We refer to this adjusted version as Model 2, and the original as Model
1. Conditioning on Model 2, the posterior distribution of d for JL0836 is found to
be consistent with the point estimate, d. In fact, this greater concordance is shared
by all samples (see Figure 5.3 panel B). Comparison of the two models using the
widely applicable information criterion (WAIC) [31] shows overwhelming evidence
that Model 2 better describes the data (AWAIC = 13091.7).

Unsurprisingly, the posterior distributions of the linear model parameters, 3, are
different when conditioning on Model 2 (see Figure 5.4). While inferences about the
effects of acarbose on bacterial abundance are therefore potentially sensitive to the
choice of model, 54 of the 60 taxa originally flagged as affected by acarbose, were also
identified when using Model 2.

An iteration of criticism and refinement here results in a new model that appears
to better describe the abundances of bacteria in the microbial community. While
additional study is needed to asses in other systems the relevance of the proposed
“global” correlation among taxa, spike-in quantification paired with model based

inference makes further exploration feasible.

5.7 Conclusions

We have introduced a novel statistical procedure for the analysis of data resulting
from spike-in quantification experiments, and have found that under one plausible
scenario it performs better than naive method operating on either relative abundance

or absolute abundance point estimates. On real data, this method is able to identify

97



105 4 +
10 4 +_f¢_ ——————————
ot e ogS‘_‘?*s’ﬁt; W* t Lawdod’ ow
5 1004 _mmmmmmmTTT
? 8
o 105 4
104 H#"'#H
,,,,*WWM
10% e A -
R
l(l)3 1I04
d

Figure 5.3: Posterior distributions versus point estimates using two models. Point
estimates of d derived from Equation 5.1 are plotted against the marginalized poste-
rior distribution. Posteriors are conditioned on either (A) Model 1, or (B) Model 2
that also includes a term, , correlating taxon abundances across samples. Both the
posterior median (circles) and the 95% credible interval (black bars) are shown. The

1-to-1 line is plotted (dashed line) and the anomalous sample JL0836 is highlighted
(red circle) in both panels.

98



ﬁ 0 ,Btreatment

Model 2
|
w

-10 R

—-154 » )

—-15 -10 -5
Model 1 Model 1

Figure 5.4: Comparison of linear model parameter estimates under two models.
Points correspond with individual taxa and the posterior medians are shown for, 3,
the log baseline abundance of each taxon, and B ..tments the effect of acarbose on
the abundance of each taxon. The relationship between estimates conditioned on
each model is shown. Model 1 and Model 2 differ by the inclusion in the latter of a
parameter, 7, correlating taxon abundances across samples. The 1-to-1 line (dashed)
is shown.

taxa affected by experimental manipulations. By harnessing a model-based approach,
the inherent assumptions are made explicit, presenting a platform for iterative refine-
ment and criticism of theory with data. The flexibility of the approach fosters further
refinement of the basic community abundance model. For instance, inter-taxon corre-
lations are a simple addition, and hierarchical effects on taxa, such as phylogenetically
constrained effects, are also possible. Likewise, expansion of this procedure to other
experimental designs such as random blocks and repeated measures is a straightfor-
ward extension.

While other methods exist to measure bacterial absolute abundance, spike-in
quantification is simple and widely applicable. Combining these data with the model-
based inference described here will generate novel insights into microbial community

dynamics inaccessible to current approaches.
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5.8 Methods

5.8.1 Simulation of realistic data

To explore statistical approaches for the identification of differential abundance, com-
munities, were numerically simulated based on a hypothesized dietary polysaccharide
supplementation experiment. For each simulation, 50 taxa were generated, 25 of these
were randomly designated as responders and had their treatment response parameter,
B, sampled from a Uniform(0, 2) distribution. The remaining 25 taxa were designated
as non-responders and had their response parameter set to 0. Taxa were randomly
permuted and assigned a rank from 1 to 50. The baseline log abundance, 3, for

taxon rank 7 was set to

log(a) — log(b)
k—1

fo=(i—1) + log(a)

where a is the abundance of taxon rank 1 (¢ = 10) and b is the abundance of
taxon rank 50 (b = 0.001). This formulation is designed so that baseline abundances
quickly decrease in lower ranks relative to the dominant taxa.

For each experiment, 15 control and 15 treated replicate communities were sam-
pled. The log absolute abundance for all taxa in each replicate was sampled from a
normal distribution with o = 0.5 and p = 8, + 8,X where X is set to 1 for treated
replicates and 0 otherwise. Spike abundance for each replicate was set to 1. Read
counts were simulated for each replicate from a Dirichlet-multinomial distribution
parameterized with the relative abundance of each taxon (including the spike), a

concentration parameter («) of 100, and a sample size of 5000 reads.

5.8.2 cMWU, cTT, sMWU, sTT implementation

Four alternative statistical procedures were chosen to represent likely approaches to
data analysis by relatively naive practitioners. Two of the procedures operate directly
on compositional data, without considering counts of the spike sequence. One of these
(cMWU) uses a non-parametric test, the Mann-Whitney U, frequently applied to the
analysis of non-normal data, including microbial relative abundance [e.g. 32]. The
other (¢TT) takes a parametric approach, utilizing a standard, two-sample t-test,
and log-transforming relative abundance to improve distributional characteristics.

Because the logarithm of 0 is undefined, a pseudocount of 1 was added to each cell
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of the count table before calculating relative abundance. Two additional procedures
were chosen that leverage point estimates of absolute abundance (also calculated
with pseudocounts) to go beyond composition. These also utilized a Mann-Whitney
U test (sMWU) and a t-test on log-transformed values (sTT). Estimates of effect size
associated with ¢TT and sTT were calculated from relative and absolute abundance

data as the difference in means of log values.

5.8.3 Acarbose experiment data and analysis

Experimental data was used from the study described in Chapter 2 on acarbose
treatment in mice. 16S rRNA gene libraries are available from the SRA, and scripts to
automatically process these data are made available online [33]. Briefly, in that study
samples (n = 143) were spiked with whole-cell cultures of Sphingopyzis alaskensis and
normalized to the wet weight of the sample. OTUs were clustered at a 97% identity
threshold.

SpikeAbund was used to fit a linear model to these data with terms for treatment,
study site, sex of the mouse, and the interaction between treatment and sex (in R-
style notation: abundance ~ treatment x sex + site’). Default priors (o = 10) were
placed on all 6 model parameters for all OTUs. The marginal posterior distributions
on Bireatment Were interpreted for each OTU. The mean of the posterior was used as a
point estimate and the fraction of MCMC samples with different sign than the mean
was used by analogy to a traditional P-value. Fractions less than 0.05 were flagged

as significantly different between control and treatment.
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CHAPTER 6
Summary and Conclusions

The four chapters of this dissertation are loosely joined by a shared theme of deepen-
ing understanding of complex microbial communities and their impacts using varied
data and improved tools. I was fortunate to have the opportunity, three years ago,
to take part in the Interventions Testing Program, giving me access to a wealth of
data not often available in microbiome studies. This collaboration forms the biolog-
ical and experimental core of the work presented here, and serves as a platform for
both my improved understanding of host-associated microbial communities and the
tools we use to explore them. This has resulted in a new perspective on the potential
role of bacterial fermentation products in mouse longevity, the impact of acarbose
on gut microbial communities, and the ecological niche of Muribaculaceae. Simulta-
neously, it has driven development of tools and techniques for integrating disparate
data types, inferring physiological properties of uncultured bacteria, and overcoming
the limitations of marker gene surveys. This top-down approach to biology has be-
come centrally important as the field struggles to match the increasing rate of data
collection with improvements in mechanistic understanding. Achieving this goal will
require not just new data, new models, and new tools, but also a new mindset in
order to leverage these for improved prediction, explanation, and manipulation.

The four studies in my dissertation contribute directly towards this end.

In Chapter 2, I describe the response of microbial communities in the guts of
mice to the longevity enhancing drug acarbose. This study combined targeted mea-
surements of fecal metabolites, 16S TRNA gene surveys, and mouse survival data.
Using these, I was able to explore predictions of the exciting hypothesis that the ob-
served life-extending effects of acarbose in mice result from the increased production
of short-chain fatty acids by gut bacteria. I demonstrated that community composi-
tion was changed by acarbose, that this was linked with changes in the concentrations

of fecal metabolites, and that these metabolites were associated with mouse lifespan.
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I also found bacterial taxa that responded dramatically to acarbose treatment. This
chapter exemplifies the power of integrating multiple data types and comprehensive
exploration of microbial communities.

In Chapter 3 I compared the genomes of the two bacterial taxa that responded
to acarbose treatment, to five “non-responders”; all in the largely uncultured family
Muribaculaceae. This was achieved through careful reconstruction of metagenomic
reads, resulting in high-quality inferred genomes. Unlikely previous culture-free stud-
ies of the clade, which were done in the absence of any physiological information, ours
leveraged the observed difference in acarbose response to explore hypotheses about
the ecological niche occupied by members of this family. I demonstrated that respon-
ders have genomic features consistent with starch utilization, while non-responders
generally do not. I was also able to identify two distinct genomic variants, poten-
tially explaining site specific dynamics. This chapter harnesses modern bioinformatic
approaches to better understand the physiology of bacteria without cultured repre-
sentatives.

In Chapter 4 I present a detailed perspective on a new approach to quantification
of bacterial communities. Microbial ecology, particularly studies of host-associated
microbiomes, is severely limited by the absence of absolute abundance information.
While sophisticated analyses can avoid the major pitfalls of compositional data, inter-
pretation of relative abundance is still constrained. I presents evidence that spike-in
quantification is robust and provides valuable abundance information, and I discuss
features that make it an attractive option relative to other methods, such as qPCR.
I also suggest a set of best practices based on my experience with the approach.
New experimental tools will be an important part of microbial ecology in the coming
decade. This chapter presents a case for using one such tool, and attempts to make
it accessible to others in the field.

In Chapter 5 I expand on my treatment of this approach, presenting a statistical
model for spike-in quantification experiments and then applying it for inference of
community dynamics. I introduce a software tool for others to apply my method to
their own experiments, and demonstrate its value in simulated and real data. I also
describe future extensions to this model that will leverage the newly accessible abso-
lute abundance information to explore complex community features. Particularly in
host-associated studies, ex vivo manipulations are well complemented by techniques
that can harness in vivo observations for improved understanding. Model-based ap-
proaches to data analysis have the potential to expand our understanding of microbial

communities in cases where direct measurements are challenging or impossible.
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Combined, these chapters explore deeply the features of the fecal microbiota in
acarbose treated mice and controls. I introduce a microbiome perspective to an
experimental model primarily studied in terms of host physiology. In this system,
I have found and explored a wealth of microbiological and ecological phenomena, a
portion of which have the potential to explain features of host health. While more
extensive study will be necessary to fully understand the role of gut microbes in
acarbose response and longevity, my dissertation has provided a foundation for this
future work.

In the more than seven years of my PhD, I have developed an appreciation for my
own strengths and interests, as well as my limitations. My evolution as a scientist is
reflected in the chapters of this dissertation, but perhaps even more so in the myriad
past and present projects that have not resulted in publications. Given my respect
for bottom up approaches and experimentation, it has been at times challenging to
negotiate a strong personal affinity for computational and top-down approaches. But,
as I move on to the next stages in my career, I am eager to focus on my strengths.
I believe my opportunities for impact will be in extracting understanding from the
large, messy data that results from modern experimental approaches.

My postdoctoral work will continue the focus on host-associated microbial commu-
nities, this time studying the ecological and health impacts of fecal microbiome trans-
plants in patients with ulcerative colitis. I will be further developing computational
approaches for recovering genomes from metagenomes, with the goal of understanding
variation in the function and persistence of bacteria in the gut. I feel fortunate to be
working in a field with not only the potential to improve human health, but where
I can straddle the space between microbial ecologist, bioinformatician, statistician,
and data scientist. My doctoral work has provided me with invaluable experience

and perspective for my coming career.
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APPENDIX A

Taxonomic analysis of two dominant

OTUs in acarbose treated mice

The most conspicuous difference in the gut microbiota induced by ACA was a site-
specific effect in two populations of bacteria both classified as members of family
Muribaculaceae (Figure 2.3). OTUs were classified based on an approximately 240 bp
fragment of the 16S rRNA gene in the V4 hypervariable region. Using this fragment,
we applied several lines of evidence to confirm that OTU-1 and OTU-4 are both
members of the Muribaculaceae and that they are genetically distinct from cultured
relatives. Classification of sequences using the method of Wang et al. [1] and the
SILVA non-redundant database as a reference [2], identified both OTU-1 and OTU-4
as members of the family with 100% bootstrap support. While use of the RDP
training set [3] Version 14 instead assigned these sequences to the family Porphy-
romonadaceae this is presumably because the Muribaculaceae are not recognized as a
taxon in the RDP (previously reported by [4]), nor are alternative names for the clade
(“S24-77 or “Homeothermaceae”). A follow-up phylogenetic analysis of representa-
tive amplicon sequences from two dominant OTUs was carried out using approximate
maximum likelihood estimation implemented in the FastTree software (version 2.1.8
[5]) using the generalized time reversible model with twenty discrete rate categories
(-gtr -gamma options). Approximate maximum likelihood phylogenetic estimation,
using a selection of type strains in the order Bacteroidales, places OTU-1 and OTU-4
in a clade with representatives of the Muribaculaceae with >95% support for the
topology of that node (see Figure A.1). While such a short sequence fragment is un-
likely to perfectly recapitulate phylogeny—indeed, tree topology was generally weakly
supported and was sensitive to both the choice of reference sequences and the evo-
lutionary model used—we are nonetheless satisfied with the evidence for assignment
of both OTU sequences to this clade; besides exceptions in the Porphyromonadaceae,

Marinilabiliaceae, and Bacteroides, our phylogenetic reconstruction largely matches
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a recently proposed taxonomy of the Bacteroidales [6].
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Figure A.1: Phylogenetic characterization of OTU-1 and OTU-4. Estimated phy-
logeny based on approximately 240 bp of the 16S rRNA gene V4 hypervariable region
and more than 130 type strain reference sequences spanning the diversity of order
Bacteroidales. Branch lengths are in units of expected substitutions per site. The
tree is rooted by a Flavobacteriales out-group (not shown). Reference taxa are labeled
with genus designations according to the SILVA database. When multiple represen-
tatives from the same genus have been folded together, the number of sequences is
reported in parentheses. Nodes with Shimodaira-Hasegawa local support over 95%
are indicated with black circles and nodes with support less than 70% have been
collapsed to polytomies. The dashed box encloses taxa inferred to be within the
Muribaculaceae. The taxon labeled ‘S24-7 (clone)’ (GenBank: AJ400263.1) is the
environmental sequence by which the clade was originally identified, and by which it
was historically named [7], while Muribaculum intestinalis (GenBank: KR364784.1) is
the first cultured representative [8]. Label colors indicate a recently proposed family
membership of each reference: Prevotellaceae (gray), Barnesiellaceae (orange), Por-
phyromonadaceae (pink), Dysgonomonadaceae (green), Bacteroidaceae (blue), Tan-
nerellaceae (light blue), Marnilabilaceae (purple), Marinifilaceae (red), Paludibacter-
aceae (brown), and Rikenellaceae (yellow) [6].

OTU-1 and OTU-4 represent uncultured genera. Over the analyzed sequence they
have 89% and 92% identity, respectively, to Muribaculum intestinalis strain YL27, the
first cultured representative of the Muribaculaceae [8]. A BLAST search against the
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NCBI non-redundant nucleotide collection did not find higher sequence similarity to

any other cultured bacteria. Representative sequences for OTU-1 and OTU-4 share

nucleotides at only 22 out of 244 positions (91%).

1]
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APPENDIX B

Expanded survival analysis of I'TP mice

Proportional hazards regression was used in this study to demonstrate an association
between SCFA concentrations in feces and the longevity of mice. Given the limited
number of samples for which matched chemical and survival data are available, sta-
tistical testing of associations with SCFAs were carried out in the pooled dataset.
Therefore, to account for known effects of treatment, sex, and site, the primary null
model used in this study includes terms for all main, two, and three-way interac-
tions of the design covariates: treatment, sex, and study site. A priori, a number of
these terms were expected to be non-zero based on ITP findings from previous cohort
years [1, 2]. Indeed, when survival data from all of control and ACA treated mice
in this cohort were analyzed together, effects were detected that recapitulated these
expectations, including: increased longevity of females, increased longevity with ACA

treatment, and increased longevity of control males at UM (see Table B.1).

Table B.1: Fitted coefficients for experimental covariates in the full ITP cohort

Term log(HR) Std. Error P

ACA -0.530 0.170 0.002
Female -0.266 0.143 0.063
TJL -0.024 0.144 0.865
UM -0.598 0.155 0.000
ACA:Female 0.230 0.245 0.349
ACA:TJL -0.225 0.242 0.353
ACA:UM 0.003 0.254 0.992
Female:TJL -0.017 0.204 0.934
Female:UM 0.580 0.213 0.006
ACA:Female:TJL 0.351 0.349 0.313
ACA:Female:UM -0.054 0.361 0.881

Interestingly, some—though not all—of these effects were still evident when ana-

lyzing the much smaller data set of mice from which we collected fecal samples.
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Table B.2: Survival effect estimates for experimental covariates

Term log(HR) Std. Error P

ACA -0.770 0.426 0.071
female -0.239 0.421 0.570
UM -0.931 0.439 0.034
ACA:female 0.398 0.589 0.498
ACA:UM 0.146 0.608 0.810
female:UM 0.807 0.597 0.176
ACA:female:UM 0.187 0.845 0.825

This increased our confidence that, despite the age of the mice at the time of
entry and the limited sample size, the associations with SCFA concentrations reflect
patterns that could be seen in the full cohort.

As described in the main results, adding terms for the concentrations of three
SCFAs improved the fit of the model (see Table B.3).

Table B.3: Survival effect estimates for experimental covariates and SCFAs

Term log(HR) Std. Error P

propionate -0.292 0.116 0.012
butyrate -0.119 0.055 0.030
acetate 0.062 0.030 0.042
ACA -0.124 0.488 0.799
female -0.476 0.433 0.272
UM -1.232 0.484 0.011
ACA:female 0.095 0.597 0.874
ACA:UM 0.241 0.654 0.713
female:UM 0.913 0.614 0.137
ACA:female:UM 0.111 0.850 0.896

Interestingly, the positive association betwen ACA and longevity is distinctly
weakened when SCFAs are included (estimated coefficient went from -0.770 with-
out SCFAs to -0.124 with). Although we do not carry out a formal path analysis, this
is consistent with the causal effects of ACA on longevity being mediated by SCFA
concentrations.

Survival analysis is potentially sensitivity to deviations from the assumptions of
the Cox family of models [3]. We therefore tested proportionality and linearity as-
sumptions relevant to our main findings. The Cox proportional hazards model as-
sumes that the hazard associated with each covariate is proportional across the full

set of ages at which mice are being tracked—e.g. that the proportional decrease in the
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risk of death for mice treated with ACA is equal from the first entry time to the last
exit. We checked this assumption using a test of the correlation between the scaled
Schoenfeld residuals and Kaplan-Meier transformed survival times (implemented as
the cox.zph function in the survival package for R, [4]) and found no evidence for

deviations for any of the design parameters nor for the included SCFAs.

Table B.4: Tests of non-proportionality of survival effects

Term Correlation P

propionate -0.127 0.155
butyrate 0.039 0.633
acetate 0.012 0.885
ACA 0.047 0.630
female 0.065 0.518
UM -0.036 0.701
ACA:female -0.090 0.401
ACA:UM 0.044 0.643
female:UM -0.028 0.778
ACA:female:UM 0.037 0.726
GLOBAL — 0.922

Similarly, visual inspection of residual plots did not provide any evidence of devi-
ations from linearity assumptions inherent to the model (Figure B.1).

While regression coefficients can be directly interpreted as a proportional increase
or decrease in hazard of death at all time points, in the general case, this does not
equate to a proportional change in expected survival time. It can therefore be chal-
lenging to understand the magnitude of the survival effect on expected lifespan. To
provide a more intuitive demonstration of the size of the effect, we compared predicted
survival curves for ACA treated, male mice at UM, with different SCFA concentra-
tions characteristic of two existing individuals, based on a hypothetical scenario in
which mice were alive at 830 days of age (i.e. a conditional expected survival curve;
see Figure B.2). These simulated results demonstrate the strength of the association

between SCFAs and survival over observed differences in concentrations.
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Figure B.1: Proportional hazard model residuals. Deviance residuals versus pre-
dicted log-hazard in a model of mouse survival that includes all design parameters
(site, sex, and treatment) as well as the three SCFAs: propionate, butyrate, and
acetate.
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Figure B.2: Predicted effects of changes in SCFA concentration on mouse longevity.
Survival of mice exhibiting realistic variation in SCFA concentrations. (A) Expected
survival curves for male, ACA treated mice at UM, conditional on being alive at
830 days of age, and (B) SCFA concentrations for that same set of mice. Two rep-
resentative butyrate, propionate, and acetate concentrations were chosen to match
the measured concentrations for a high (red) and low (blue) butyrate/propionate
individual, both having similar acetate concentrations.
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