Brief Introduction to Bayesian Inference

Byron J. Smith BMI 206 2020-11-19

Slides: https://bit.ly/36GJRrE

Code: https://bit.ly/36M3YVl

With help _ from XKCD Byron J. Smith BMI 206 2020-11-19

Slides: https://bit.ly/36GJRrE

Code: https://bit.ly/36M3YVl

What is science?

- Learn discrete facts about the world.
 - "COVID-19 is caused by SARS-CoV-2."
 - Karl Popper
 - "Strong Inference": Rule out all other plausibilities
- Measure (continuous) parameters
 - "Wearing a mask decreases your risk of becoming infected with SARS-CoV-2 by 55.2%."
- ...But what about questions somewhere in between these two extremes?
 - "Does wearing a mask affect your risk of becoming infected?"

"Traditional": Null hypothesis statistical testing

"Does wearing a mask affect your risk of becoming infected?"

- Run an (e.g.) t-test lacksquare
 - Implies a null hypothesis: $H_0: \mu_{ ext{mask}} = \mu_{ ext{not}}$ Ο

- Calculate p-value
- If p < 0.05: we "reject the null hypothesis" lacksquare
 - Conclude that wearing a mask *does* affect your infection risk
- Else p > 0.05 : we cannot reject

What does the p-value represent?

What does the p-value represent?

- Probability of seeing a test statistic as extreme as the one we observed in a world where the null hypothesis is true.
 - NOT: The probability of the null hypothesis being true.

"Science by p-value"

<u>Shortcomings:</u>

- Misleading when:
 - Intuition/reality does not match test assumptions (E.g. small sample size)
 - When our null hypothesis is trivially wrong
- Ignores prior information
- Ignores effect size

Odds Are, It's Wrong

STATISTICS

Measurement error and the replication crisis

P values, the 'gold standard' of statistical validity, are not as reliable as many scientists assume.

"Science by p-value"

<u>Shortcomings:</u>

- Misleading when:
 - Intuition/reality does not match test assumptions (E.g. small sample size)
 - When our null hypothesis is trivially wrong
- Ignores prior information
- Ignores effect size

What we would prefer:

"How does wearing a mask affect the risk of becoming infected?"

There is a 95% probability that wearing a mask decreases your risk of becoming infected by 50% or more

 $P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$

"Posterior"

"Likelihood"

"Prior"

"Normalizing Constant"

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$$

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$$

Does wearing a mask affect COVID-19 risk?

Rephrase: What is the relative risk to wearers vs. non-wearers?

 $P(X|\theta)$

P

 (θ)

 θ Odds ratio of COVID-19 among wearers and non-wearers

Observed individuals and cases among both groups

Probability of the observed numbers, given the odds ratio

Prior probability of the given odds ratio

Marginal probability of this observation

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$$

Does wearing a mask affect COVID-19 risk?

 As we collect more data, the posterior distribution converges on the observed odds ratio

How to calculate the posterior probability?

 $P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$

How to calculate the posterior probability?

• Hard

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{\int_{\Theta} P(X|\theta') P(\theta') d\theta'}$$

How to calculate the posterior probability?

- Hard
- Easier: Sampling from the posterior
- Markov-Chain Monte Carlo (Metropolis-Hastings algorithm)

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{\int_{\Theta} P(X|\theta') P(\theta') d\theta'} \propto P(X|\theta) P(\theta)$$

Sampling heta from the posterior

• Markov-Chain Monte Carlo (Metropolis-Hastings algorithm)

$$\theta_1, \theta_2, \theta_3, ..., \theta_n$$

Sampling θ from the posterior

- Markov-Chain Monte Carlo (Metropolis-Hastings algorithm)
- Use samples from the posterior to calculate
 - Expectations
 - Credible intervals

Why doesn't everyone do it this way?

- Computation
 - Scales unfavorably with number of parameters, size of data
 - May require many samples due to "poor mixing"
- The Prior
 - "Introduces bias"
 - Subject to criticism
- Alternatives
 - Maximum likelihood

Why doesn't everyone do it this way?

- Computation
 - Scales unfavorably with number of parameters, size of data
 - May require many samples due to "poor mixing"
- The Prior
 - "Introduces bias"
 - Subject to criticism
- Alternatives
 - Maximum likelihood

- Computation
 - Huge progress in last 20 years.
 - HMC, Variational Inference
- The Prior
 - Useful for incorporating expert knowledge, constraints, intuition.
 - Makes assumptions explicit
- Alternatives
 - Challenging to assess
 uncertainty from point estimates

Logistic Regression

$$y_i \sim \text{Bernoulli}(p_i)$$
$$\log (p_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_K x_{iK}$$
$$\beta_k \sim \text{Normal}(0, 1)$$

Try it out!

https://bit.ly/36M3YVl

Logistic Regression

$$y_i \sim \text{Bernoulli}(p_i)$$
$$\log i(p_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_K x_{iK}$$
$$\beta_k \sim \text{Normal}(0, 10)$$

Logistic Regression

$$y_i \sim \text{Bernoulli}(p_i)$$
$$\log i(p_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_K x_{iK}$$
$$\beta_k \sim \text{Laplace}(1)$$

Democratized statistical modeling

- Emphasizes parameter estimates and uncertainty over p-values
- "Inference Button": flexible, well built software to sample from and interpret models
 - STAN, PyMC3, Pyro, Turing.jl
- Only scratched the surface in this session

• Every Statistics XKCD (44 and counting): https://bit.ly/32YH4Jc