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Outline of the presentation

Motivation:

Profiling the microbiome with metagenomics
Method:

Assembly graph deconvolution with StrainZip
Demonstration:

Application to a complex, ground-truthed dataset
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M|crob|omes are Complex
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Metagenomics enables modern microbiome science



Metagenomics enables modern microbiome science




Assembly and depth quantification are complementary
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Alignment



Closely related sequences are a major challenge for
alignment

Assembly

Alignment



Goal:
Reference-free depth
estimation among related
sequences in metagenomes




Method



Closely related sequences are a major challenge for both
metagenomic assembly and alignment
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Closely related sequences are a major challenge for
alignment
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Complex graph structure
leads to low-quality assembly



Closely related sequences are a major challenge for

alignment
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Complex graph structure
leads to low-quality assembly

Graph-pangenome
approaches account for this
variability better than linear
references



Closely related sequences are a major challenge for
alignment

Complex graph structure
leads to low-quality assembly

Graph-pangenome
approaches account for this
variability better than linear
references

But long reads too expensive
for profiling multiple samples



Closely related sequences are a major challenge for

alignment
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Complex graph structure
leads to low-quality assembly

Graph-pangenome
approaches account for this
variability better than linear
references

But long reads too expensive
for profiling multiple samples

And short-reads are
inherently ambiguous



KEY IDEA: The expected depth of a k-mer is the sum of
the paths that include that k-mer
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KEY IDEA: The expected depth of a k-mer is the sum of

the paths that include that k-mer Path depths
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\— e \ _/" ‘
—/ \ / \ Indicator: 1 qpserved

K-mer in path depths

+
Z Lpk Bp




KEY IDEA: The expected depth of a k-mer is the sum of
the paths that include that k-mer
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KEY IDEA: The expected depth of a k-mer is the sum of

the paths that include that k-mer Path depths
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KEY IDEA: The expected depth of a k-mer is the sum of

the paths that include that k-mer Path depths
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KEY IDEA: The expected depth of a k-mer is the sum of

the paths that include that k-mer
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KEY IDEA: The expected depth of a k-mer is the sum of
the paths that include that k-mer
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Deconvolution: Inferring the depth of '\
these latent paths based on observed X /6 A Y
kK-mer depths




We can enumerate all possible paths on our assembly
graph

XY



We can enumerate all possible paths on our assembly
graph
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We can enumerate all possible paths on our assembly
graph
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...but this grows exponentially with graph complexity



KEY IDEA: A single "junction” is the minimum unit of
deconvolution
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Divide and conquer: a single "junction” is the minimum unit
of deconvolution
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Linear model of path depths
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But not all paths exist: picking active paths is model
selection
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But not all paths exist: picking active paths is model
selection
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Last trick: To increase our power to pick paths, combine

multiple samples \eS \eS
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Drop paths with no depth in any sample
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Used statistical linkage to resolve ambiguity about
which of possible paths are "real"



Resolve ambiguity, longer linear sequences
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Resolve ambiguity, longer linear sequences

N

Newly split unitigs already have depths estimated across samples



lteratively unzipping local junctions

NN\
e/ No \a



lteratively unzipping local junctions
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lteratively unzipping local junctions
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lteratively unzipping local junctions

-—»D—»D\\.//D
. =



lteratively unzipping local junctions




lteratively unzipping local junctions
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lteratively unzipping local junctions
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StrainZip

Assembly Graph Deconvolution for
Quantification of Strain-Specific
Sequences across Metagenomes

https://github.com/bsmith89/StrainZip
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https://github.com/bsmith89/StrainZip
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4
hCOM2 is a complex (125 species), synthetic community \
with high-quality, reference genomes for all strains
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Veillonella parvulla Veillonella parvulla
Strain A Strain B
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Veillonella parvulla <&
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| "Weighted N50"

Complex
assembly graph
results in short
path lengths

Depth-weighted median path length
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Path lengths
Increase over
successive rounds
of deconvolution

Depth-weighted median path length
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Closely related
strains are
Interspersed in
the assembly
graph
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Deconvolution
recovers longer,
strain-specific
sequences



Deconvolution
recovers longer,
strain-specific
sequences

...Including
lower-abundance
strains
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Deconvolution
recovers longer,
strain-specific
sequences

...Including
lower-abundance
strains

...and species




Veillonella dispar
(68,534 bp; 100% match)

Deconvolution . L
recovers longer, N
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Result: both paths, and path depths
across samples (without read mapping)




Path

Result: both paths, and path depths
across samples (without read mapping)
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Path

Result: both paths, and path depths
across samples (without read mapping)
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Sample

Path

Path

yideQ

Result: both paths, and path depths
across samples (without read mapping)
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Estimated
unitig
depths
closely
match
observed
depths

Predicted =9

Observed =9
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Estimated
unitig
depths
closely
match
observed
depths

Observed Unitig Depth

107

L 107
105 B 106
10°
16° 104
103

104
102
1

101 4

10°

i e

102 104 10% 103 10°

Predicted Unitig Depth

Juno) Biiun



Path depths match
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Clustering paths by depth combines multiple sequences
from the same strain

Sample

.
Path
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Iterative Junction Deconvolution
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Combines Assembly, Depth Estimation
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Iterative Junction Deconvolution Combines Assembly, Depth Estimation
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Thank You!
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