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Outline of the presentation

● Motivation:

Profiling the microbiome with metagenomics

● Method:

Assembly graph deconvolution with StrainZip

● Demonstration:

Application to a complex, ground-truthed dataset



Motivation



Microbiomes are complex
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Across Species:

● Hundreds of bacterial species 
within each person

● High inter-individual, spatial, 
and temporal variability

● Span a huge range of 
abundance
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Across Species:

● Hundreds of bacterial species 
within each person

● High inter-individual, spatial, 
and temporal variability

● Span a huge range of 
abundance

Microbiomes are complex

Within Species:

● Huge strain diversity
● Functionally important gene 

content variation
● Widespread recombination
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Metagenomics enables modern microbiome science



Metagenomics enables modern microbiome science

Assembly



Assembly and depth quantification are complementary

Assembly

Alignment

Depth



Closely related sequences are a major challenge for 
alignment

Assembly

Alignment

?



Goal:
Reference-free depth

estimation among related 
sequences in metagenomes



Method



Closely related sequences are a major challenge for both 
metagenomic assembly and alignment

Complex graph structure
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Closely related sequences are a major challenge for 
alignment

Complex graph structure 
leads to low-quality assembly 

Graph-pangenome 
approaches account for this 
variability better than linear 
references

But long reads too expensive 
for profiling multiple samples

And short-reads are 
inherently ambiguous
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KEY IDEA: The expected depth of a k-mer is the sum of 
the paths that include that k-mer

Path 
encoding Observed 

depths

Path depths 
(unknown)



KEY IDEA: The expected depth of a k-mer is the sum of 
the paths that include that k-mer

Deconvolution: Inferring the depth of 
these latent paths based on observed 
k-mer depths

From these

Estimate this



We can enumerate all possible paths on our assembly 
graph



We can enumerate all possible paths on our assembly 
graph



…but this grows exponentially with graph complexity

We can enumerate all possible paths on our assembly 
graph



KEY IDEA: A single "junction" is the minimum unit of 
deconvolution



Divide and conquer: a single "junction" is the minimum unit 
of deconvolution

?



Linear model of path depths
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But not all paths exist: picking active paths is model 
selection
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Last trick: To increase our power to pick paths, combine 
multiple samples
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Drop paths with no depth in any sample
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which of possible paths are "real"



Resolve ambiguity, longer linear sequences

Can "unzip" this unitig into two paths
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Resolve ambiguity, longer linear sequences

Newly split unitigs already have depths estimated across samples
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Iteratively unzipping local junctions
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Iteratively unzipping local junctions



Iteratively unzipping local junctions



StrainZip

Assembly Graph Deconvolution for 
Quantification of Strain-Specific 
Sequences across Metagenomes

https://github.com/bsmith89/StrainZip
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Demonstration



hCOM2 is a complex (125 species), synthetic community
with high-quality, reference genomes for all strains



Veillonella dispar

Veillonella parvulla
Strain A

Veillonella parvulla
Strain B

hCOM2 is a complex (125 species), synthetic community
with high-quality, reference genomes for all strains

closely related strains

Includes 



Veillonella dispar

Veillonella parvulla
Strain A

Veillonella parvulla
Strain B
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Closely related 
strains and 
species result in 
bubbles and more 
complex 
topologies in the 
assembly graph
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results in short 
path lengths

"Weighted N50"
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of deconvolution
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Closely related 
strains are 
interspersed in 
the assembly 
graph
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Deconvolution 
recovers longer, 
strain-specific 
sequences

…including 
lower-abundance 
strains
…and species



Veillonella parvulla Strain B
(17,218 bp; 99.99% match)

Veillonella parvulla Strain A
(17,229 bp; 100% match)

Veillonella dispar
(68,534 bp; 100% match)

Deconvolution 
recovers longer, 
strain-specific 
sequences

…including 
lower-abundance 
strains
…and species
…accurately
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Estimated 
unitig 
depths 
closely 
match 
observed 
depths



Predicted Unitig Depth
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Path depths match reference-based strain depth estimates



Path

S
am

pl
e

Clustering paths by depth combines multiple sequences 
from the same strain



Enables 
strain-resolved 
genome assembly 
from metagenomes



Iterative Junction Deconvolution Combines Assembly, Depth Estimation

Recovers Closely Related Genomes Enables Strain-Resolved Metagenomics
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Thank You!


