
1. Thank you to TODO for the generous introduction, and thank you to the 
organizers for inviting me to present today.

2. I’m excited to tell you today about some very recent work on scaling up strain 
inference in shotgun metagenomic data.



1. You can find the method and all of the results that I present today in a preprint 
that we uploaded last month to BioRxiv

2. I’ll also direct you to StrainFacts on my GitHub
3. And you can tweet @ my handle shown here



Before I get started I should acknowledge colleagues, institutions, and funding 
sources without whom this project would not have been possible. In particular, i want 
to thank my co-authors, and in particular Katie Pollard for having been a wonderful 
mentor throughout my postdoc.



My talk today is roughly broken up into four sections

1. First, Introducing intraspecific diversity in the gut microbiome and why you 
should care

2. Then I’ll describe some of the existing methods for understanding strains 
using shotgun metagenomics (and their shortcomings)

3. Then I’ll lay out metagenotype deconvolution and how StrainFacts scales 
strain inference to large numbers of samples

4. Finally I’ll spend the last section of my talk showing a few exciting results from 
a large collection of publicly available metagenomes



Let’s jump right in!



So before I tell you why you should care about strains in the human microbiome, let 
me start by very quickly telling you why you should care about the microbiome.



1. Microbes inhabiting the gut play important and well documented roles in host 
health.

2. Besides very obvious impacts like diseases, gut microbes also play a 
documented role in digestion of food, pathogen resistance, modulating the 
immune system, and more

3. I also want to stress how diverse the microbiome is, both within a single 
individual who can have hundreds of bacterial species (not to mention 
numerous archaea, protists, and viruses)

4. But also between individuals, which usually have more differences than 
similarities.



1. The focus of this presentation, however, will be on a different kind of diversity: 
within-species diversity.

2. It is becoming increasingly clear that when considering microbes at a strain-
resolution, the intra-individual and inter-individual diversity is even higher, 
potentially with important impacts on the functions of the microbiome



1. This understanding is being made possible by microbial genome references.
2. After 20+ years of studying the human gut microbiome, projects like the 

unified human gastrointestinal genome (UHGG)—which specifically harnesses 
culture-free genomes (MAGs)—are nearing a complete representation of 
species in the human gut.

3. I say this based on results like the figure on the right, which I’ve borrowed from 
the UHGG paper in 2021, which shows the fraction of shotgun metagenomic 
reads that map to that reference database, now finally >75-90%, which is a 2x 
or greater improvement over previous databases.

4. It’s still important to point out that the degree of database coverage is lower in 
understudied populations, as we can see with samples from these four African 
nations. There’s still more work needed to gather a truly representative 
database.



1. What’s more, while we might now have a reference for the most common 
species

2. For the large majority of species, we don’t have much strain diversity 
represented

3. The median number of representative genomes across all species in the 
UHGG is 2

4. And 75% of species have fewer than 10 genomes.
5. This means that for most species we know little or nothing about intraspecific 

diversity



1. And strain level diversity is important.
2. We’ve been talking about it for almost the last two years.
3. Just like SARS-coV-2, we can see important differences in the traits of 

different microbial strains
4. And like SARS-coV-2, sequence comparisons can also inform our 

understanding of microbial origins, transmission, ecology, and evolution



1. If that’s not enough motivation, we know a number of the ways that strain 
diversity can be biologically important in the gut microbiome

2. For instance, there are traits that are especially obvious, like pathogenicity 
and antibiotic resistance

3. Along with a few other traits like phage resistance and various metabolic 
auxotrophies.



1. One theme that I think is worth pointing out for these strain-specific traits is 
that they show up in E. coli and other model-microbes

2. These have been relatively easy to identify and study with a pure culture
3. But this is just the tip of the iceberg when it comes to strain-diversity



1. For instance, here’s a characteristic example: Digoxin is a cardiac glycoside, a 
commonly prescribed drug used to treat several heart conditions

2. However, when digoxin is reduced to dihydrodigoxin by some members of the 
gut microbiome it is inactivated,

3. changing its pharmacological profile in medically relevant ways



1. Importantly, while Eggerthella lenta is known to carry-out this process,
2. Only some strains have the cgr-operon that encodes this reduction
3. This motivates us to ask: “What other strain-specific traits are we missing 

when we only consider species-level taxonomy?”



1. Before we go any further I want to quickly cover the semantics of the term 
“strain”.

2. If microbial diversity is conceptually flattened into two dimensions
3. we might see that every single isolate has something that distinguishes it from 

others



1. We divide this diversity space at the largest level into species



1. For this presentation, strains are groups of very similar genomes clustered 
within species

2. When we talk about “strain inference” I want to be clear that I’m using this 
operational definition of strains based on what we have the technical ability to 
differentiate.



1. And when I say similar genomes, I’m broadly referring to two different, but 
related things.

2. Strains can differ in
a. the set of genes encoded
b. Or the sequence of single-nucleotide variants at polymorphic sites 

within these genes



1. While the first is clearly very important, today I’m talking exclusively about the 
second

2. Differentiating strains based on the sequence of variants at SNP sites in the 
core genome



1. This is where strain inference comes in



1. 16S rRNA gene is highly conserved, and therefore has only limited 
phylogenetic resolution



1. On the other hand, shotgun metagenomic data is increasingly available, 
raising many exciting possibilities in microbiome science.

2. However, standard methods for taxonomic characterization using 
metagenomic data are mostly limited to mapping reads to reference genome 
databases

3. and mostly only resolve taxonomy at the species level



1. Nonetheless, shotgun metagenomic reads mapping across SNP sites
2. include single-nucleotide variants that characterize strains



1. We call the process of tallying up all the alleles seen in reads covering each of 
these SNP sites: “metagenotyping”.

2. The “Genotyping” just like what we do for individual single organisms



1. But “meta”-genotyping because multiple strains can co-exist in the same 
sample and may be sequenced



1. While a multitude of tools that map reads and count alleles at SNP sites have 
been created in the past few years

2. The work that I’m presenting today was really motivated by a metagenotyper 
built by my colleagues in the Pollard Lab

3. GT-Pro is a very very FAST metagenotyper, which trades read alignment for 
exact k-mer matching

4. This depends on a pre-computed database of SNVs



1. GT-Pro focuses on bi-allelic sites, which make up >90% of all SNPs
2. And also focuses on sites in the core genome
3. While simultaneously tallying SNVs for almost a thousand species in the 

default database



1. And it really is fast. GT-Pro is about an order of magnitude faster than other 
metagenotypers

2. Making it possible to metagenotype hundreds of species in tens of thousands 
of human microbiome samples in publicly available sequence databases

3. However, while metagenotyping is now easy and fast…



1. Interpreting metagenotypes is still hard
2. Specifically, four key challenges exist…

a. Metagenotypes for low abundance species can be sparse
b. Closely related strains may not be well differentiated by their 

metagenotype
c. Most strains may not have been previously characterized
d. And, crucially, as I’ve mentioned before, a single sample may have 

multiple, co-existing strains



1. As a result, naive approaches to strain-inference are each handicapped by 
some combination of these challenges.

2. For instance, taking the consensus allele at each position in the metagenotype 
from one sample will only recover a dominant strain

3. And even then might be sparse



1. Alternatively, using the observed SNVs as a “fingerprint” and matching to a 
database of known strains, fails when strain diversity has not already been 
well characterized.



1. One especially popular approach has been to consider the the dissimilarity 
between metagenotypes using, for example, the cosine distance.

2. A cutoff dissimilarity is chosen below which samples are considered to have 
the “same strain”

3. Unfortunately, this approach doesn’t have a principled way to differentiate 
between shared strains in a mixture and genotypically similar strains.



1. So, if none of the other approaches is well suited to interpreting metagenotype 
data,

2. Let’s talk about an approach to strain inference—which I’m calling strain 
deconvolution—that gracefully handles all four of these challenges



1. The key concept of the strain deconvolution approach is that we combine 
metagenotypes from multiple samples…



1. To fill in sparse genotypes
2. And allowing us to use use covariance in the observed frequency of alleles at 

SNP positions
3. To disentangle strain mixtures



1. Strain deconvolution is analogous to non-negative matrix factorization (or 
NMF)

2. Here, multiple metagenotypes have been stacked into a matrix, where I’m 
depicting a higher frequency of the alternative allele with darker colors

3. (in this cartoonized version I’m showing just three samples, but we might 
consider many more)



1. This metagenotype matrix can be decomposed into
2. a matrix of strain genotypes (here a binary matrix of genotypes with each 

column a strain)
3. And a matrix of strain relative abundances across each of the samples
4. We can model the metagenotype matrix as a linear combination of the strain 

genotypes, i.e. the matrix product of the relative abundance matrix and the 
genotype matrix.



1. Alternatively, we can describe this deconvolution as a probabilistic graphic 
model

2. which I am showing here in an informal plate notation
3. (plates in the background indicate the indexing for each variable)
4. In this simplest model, “gamma”, the variable I’ll use throughout to refer to the 

strain genotypes
5. And “pi”, a vector of strain relative abundances
6. Combine (implicitly through matrix multiplication) to determine the allele 

frequencies: “p”
7. This model-based approach to deconvolution has a few key differences from 

canonical NMF…



1. First, we can model the observed metagenotype counts, e.g. by explicitly 
modeling sequencing error and the discrete allele counts with a binomial 
likelihood



1. Second, unlike NMF where the only constraint is non-negativity, here we 
constrain the rows of “pi” to sum-to-1 (since they’re relative abundances)



1. And third, “gamma” can be modeled as binary: either the reference allele (0) 
or the alternative allele (1).

2. We can then use constrained optimization (e.g. maximum likelihood) to obtain 
estimates of gamma and pi, the strain genotypes and their relative 
abundances across samples.

3. I am aware of two existing tools that already implement this approach.
4. Unfortunately, there’s a shortcoming: discrete optimization is HARD



1. Here I’m showing the runtime of a tool called “Strain Finder”, which uses 
expectation maximization approach to optimizing the parameters of the model.

2. What you see is that over a 1 order-of-magnitude increase in the number of 
samples and strains, Strain Finder takes almost 3 orders-of-magnitude more 
time to estimate parameters.

3. For 400 samples and 120 strains, this requires a median of 6.4 hours on 
simulated data

4. Increasing the size of our model, e.g. by an additional order of magnitude, is 
simply not feasible within a reasonable runtime



1. I believe that a major reason for this poor scaling is the discreteness of the 
genotypes, gamma

2. Strain Finder is limited by the computational scaling of its expectation 
maximization algorithm



1. Which brings us to the key approach taken by my tool:
2. In StrainFacts, which stands for Strain Factorization…
3. We replace the binary genotype constraint with a fuzzy genotype: on the unit 

interval between 0 and 1.
4. This TRANSFORMS our model from discrete to fully differentiable, and allows 

us to apply efficient, gradient-based methods for parameter optimization.



1. You might notice that fuzzy genotypes are not biologically realistic, since 
alleles are discrete.

2. To deal with this issue without losing differentiability, we take a regularization 
approach, putting a prior on gamma that keeps genotypes close to 0 or 1, 
despite their fuzziness

3. Specifically, we use the shift-scaled dirichlet distribution for this fuzzy 
approximation, tuning the scaling parameter to regularize our estimates 
towards binary values.



1. And it works!
2. We get much better scaling with StrainFacts than Strain Finder, a nearly two 

order of magnitude decrease in runtime for larger models.



1. What’s more, we can run StrainFacts on a GPU, further improving our runtime 
for large models

2. StrainFacts is therefore capable of fitting very large models with thousands or 
tens-of-thousands of samples and hundreds of strains



1. Besides these fuzzy genotypes, StrainFacts also applies regularization to 
strain relative abundances

2. We push estimates towards a smaller number of active strains in each sample



1. And, with a hierarchical prior, we also regularize the overall diversity towards 
fewer strains

2. This regularization reflects our preference for greater parsimony
3. And, since we don’t need a secondary model selection step to choose a strain 

number,
4. The computational demands of our approach is further reduced



1. Finally, to complete this description of the StrainFacts model
2. I’ll add that we also use a Beta-Binomial likelihood, to model count 

overdispersion



1. The accuracy of our inferences is, of course, important
2. We use simulations to compare our estimates to a ground truth
3. And find that StrainFacts estimates are comparable to those obtained by 

Strain Finder
4. (while being several orders of magnitude faster)



1. But simulations don’t necessarily capture all of the features of real data
2. To validate our inferences we applied single-cell genomics to one sample from 

a larger study of ulcerative colitis patients
3. Single-cell genomics captures a sparse representation of the genotypes of 

individual cells in a sample, and therefore reflects individual strains
4. On this slide I’m showing an ordination of these single-cell genotypes for one 

species, Streptococcus thermophilus.
5. Closer points reflect more similar genotypes, based on the Hamming distance
6. What you can see is that in this sample, S. thermophilus has a remarkable 

amount of strain diversity: with genotypes clustering into four distinct types, 
here highlighted by colors.



1. Adding the consensus metagenotype to this plot (red “x”), you can see that the 
majority-vote genotype reflects the majority strain, while completely missing 
the three other clusters.



1. On the other hand, StrainFacts correctly infers that there are four distinct 
strains, here shown as black triangles

2. For three of the four inferred strains, these inferred strains match the single-
cell genomes closely, suggesting that StrainFacts is capable of accurate 
inference in real biological data even for species with a high degree of strain 
heterogeneity.

3. And, while for the fourth cluster the similarity is not so clear, this strain was 
estimated to be at the lowest relative abundance, suggesting that there may 
not have been enough information to infer this genotype.



1. For the remainder of this talk I want to show you some of what we found when 
we applied StrainFacts to real data



1. Because of rapid metagenotyping thanks to GT-Pro, we now have access to 
metagenotypes for tens of thousands of metagenomic samples across 
numerous independent human microbiome studies.



1. I’d like to share two vignettes that demonstrate the value of StrainFacts for:
a. Understanding microbial biogeography
b. Studying microbial population genetics



1. Agathobacter rectalis (previously known as Eubacterium rectale) is a 
prevalent and abundant member of the human gut microbiome.

2. Across dozens of studies, about 10,000 samples had sufficient coverage of A. 
rectalis SNPs to deconvolve strains.

3. This resulted in 198 inferred strains
4. Access to sample metadata for many of the available metagenomic samples 

means that we can also ask about the association between strains and the 
country where that sample was collected



1. This heatmap summarizes the distribution of the 198 inferred strains (rows) 
across 33 studies (columns) with a minimum of 10 human stool 
metagenomes.

2. Each column summarizes a single study, with the brighter colors reflecting a 
larger fraction of samples dominated by each strain (row)

3. Columns are sorted based on similarities in this dominance profile
4. You’ll also see that columns have been colored by the study country
5. You also might notice that these study profiles seem to cluster:

a. While several strains are found across many studies,
b. Some are much more prevalent in a subset of these



1. Since these colors can be a bit hard to parse, here I’ve highlighting all six 
studies performed in China

2. You’ll see that these cluster closely together, and are characterized by a 
couple of distinct strain groups

3. This is consistent with previous reports of a subspecies of A. rectalis highly 
enriched in Chinese metagenomes.



1. But China is not the only country where independent studies cluster together.
2. This box highlights 7 studies performed in the US
3. While these studies are not as distinctly/visibly different as the studies from 

China, they still cluster together
4. What I think is particularly exciting about this is that each columns represents 

a completely INDEPENDENT study of human stool samples, with different 
subjects and protocols

5. But they nonetheless clearly reflect the geographic origin based on the 
dominant A. rectalis strains



1. And, to a less dramatic extent, this geographic clustering also extends to 
many of the remaining studies from across Europe and Canada

2. (Although this clustering is not perfect)
3. I’m really excited by the potential for tracking strains across human 

populations to inform our understanding of how microbes are transmitted 
between individuals globally.

4. Not to mention identifying associations with human physiology, diet, and 
disease



1. Finally, I want to talk about the potential for strain inferences to inform our 
understanding of microbial population structure and evolution



1. But first, a quick refresher on linkage disequilibrium
2. When we look across polymorphic sites in the genome, we see that we can 

use the variants that we see at one position to predict the variants at other 
positions

3. This correlation between alleles at SNP sites is called linkage, and reflect the 
shared inheritance of the sites together, as a unit

4. In perfectly asexual organisms, this linkage is only broken by subsequent 
mutations at one of the sites.



1. However, this correlation can also be broken due to recombination.



1. And, since this is a spatial process, SNPs that are further apart are more likely 
to be separated by recombination



1. As a result, we can use the relationship between genomic distance (here on 
the x-axis) and linkage disequilibrium (on the y) to understand recombination 
in microbes



1. LD is a property of pairs of SNPs
2. and we can compare the pairwise LD and distance for all pairs of SNPs



1. The expectation is that, in the presence of recombination, LD will drop quickly 
with distance.

2. And this LD decay is one way to detect recombination in microbes.



1. For Escherechia coli, this is exactly what we see.
2. Here I’m showing a two dimensional histogram, where each column reflects 

the distribution of pairs at that distance
3. And the darker shades indicate more pairs with that LD



1. And here I’ve plotted the 90th-percentile LD for SNP pairs at a range of 
distances in the genome

2. You can see that LD starts very high for neighboring SNPs and then quickly 
decays, before leveling out at larger distances

3. This suggests both that recombination has occurred frequently in the E. coli 
population

4. And that we’re still seeing some population structure (i.e. E. coli is not a 
panmictic species)



1. What’s more, because E. coli is very well-studied, we can confirm this finding 
using reference strains

2. which I’ve now added to this plot as a blue profile.
3. You can see that these results are both qualitatively and quantitatively very 

similar to the de novo estimates



1. And this result isn’t limited to E. coli
2. Here I’ve extend this analysis to A. rectalis, as well as M. smithii, the most 

abundant archaeon in the human gut, as well as CAG-279, a unnamed and 
never-isolated species of bacterium.

3. We observe distinctly different LD-decay profiles for each
a. Different decay rates, and different long-distance LD

4. Comparative population genetics is potentially a valuable tool for 
understanding population structure and recombination across species



1. So, in summary, deconvolution leverages metagenotypes to quantify strain 
abundance and reconstruct genotypes

2. StrainFacts scales this approach to datasets the size of publicly available data 
from many studies

3. We were able to validate our tool using simulations and single-cell genomics
4. And we find that it has biologically interesting applications across a number of 

fields



1. Thank you very much for your attention and I’d love to take any questions










