
Figure 5: Functional category enrichment 
and SNP profile concordance in 
StrainPGC-inferred E. coli genomes. (A) 
Heatmap of COG category enrichment 
colored by the log odds ratio of a gene 
being found in that  pangenome fraction 
given the functional category of its EggNOG 
annotation. Genes are partitioned into core, 
shell, and cloud fractions based on their 
prevalence in 33 novel E. coli 
genomes—core: >95%, shell: 10-95%, 
cloud: <10% prevalence. Red and blue 
colors indicate categories enriched and 
depleted, respectively, in a particular 
pangenome fraction. Markers indicate the 
significance of the result (Fisher’s exact 
test). (B) Heatmap of SNP profile 
concordance colored by the median score 
for shell pangenome genes in each COG 
category. Concordance scores for each 
gene are calculated as the Pearson’s 
correlation coefficient of all pairwise SNP 
dissimilarities versus difference in that 
genes presence. Purple and orange colors 
indicate categories with shell genes that are 
generally more concordant or discordant, 
respectively, than the overall gene set.

it

Figure 4: Pairwise relationship between 
SNP profile and gene content dissimilarity 
in both reference and StrainPGC-inferred 
E. coli genomes. (A) Heatmap depicting 
the degree of gene content dissimilarity, 
calculated as a weighted 
cosine-dissimilarity. Columns are ordered 
based on the average-neighbor, 
agglomerative clustering tree calculated 
on SNP profile dissimilarities drawn 
above. Rows are ordered by a parallel 
agglomerative clustering, but based on 
gene dissimilarity, instead. Colors along 
columns and rows match the legend in (B) 
and indicate the source of the genome 
(isolates and MAGs derived from the 
UHGG and annotated in the MIDAS2 
reference database). Entries for genomes 
compared to themselves are highlighted in 
bright teal. As a result, clusters of teal 
points in dark foci suggest clusters of 
genomes where SNP profiles and gene

Figure 3: Potential and realized strain diversity 
inferred by StrainPGC in the HMP2 collection. 
Among more than 1300 metagenomes, each with 
tens or hundreds of species, StrainPGC ultimately 
identifies 4292 strains that make it past final quality 
filters. These include representatives of 1 archaeal 
and 11 bacterial phyla,

Figure 2: The performance  of 
StrainPGC in a synthetic community 
benchmark. Panels are 
2D-histograms summarizing the 
relative performance of StrainPGC 
(Y-axis) in estimating the gene 
content of 84 species in the 
synthetic community compared to an 
alternative approach (X-axis), one 
of: PanPhlAn, StrainPanDA, or a 
depth-only method (identical to 
StrainPGC, but that does not filter 
on correlation). Rows correspond to 
each performance index and 
columns to the alternative 
approaches. Counts above the 
diagonal correspond to StrainPGC

The Strain-Partitioned Gene Content (StrainPGC) method combines data 
across multiple metagenomic samples, harnessing correlations with 
species depth to confidently assign genes to each strain.

StrainPGC: Resolving strain-level gene content
variation from large, metagenomic datasets
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Applying StrainPGC to the HMP2 
metagenomic dataset reveals 
strain-specific gene repertoires 
corresponding to thousands of 
novel genomes.

In Escherichia coli (shown here), as well as many other species, gene content similarity decays 
quickly with core genome divergence, demonstrating the importance of strain-resolved analyses.

StrainPGC improves both the precision and recall of gene content 
inferences relative to comparable tools.

Figure 1: Graphical summary of the StrainPGC method 
illustrating (A) its inputs, key intermediates, and outputs. 
StrainFacts deconvolves GT-Pro SNP profiles in order to 
identify individual strains shared across multiple samples 
as well as the mixing of multiple strains in individual 
samples. StrainPGC then integrates pangenome profiles 
from one or more samples with the same strain, and infers 
a gene repertoire—visualized in (B)—based on both 
normalized depth (Y-axis)  and correlations in depth across 
samples (X-axis). Subsequent quality control then selects 
strains with accurate inferences.

Inferred genomes recapitulate and expand on our understanding of pangenome dynamics: 
variable gene content is enriched in functional annotations with potential relevance to human 
health and does not always coincide with core genome SNPs.

Expanding microbiome-wide association studies 
(MWAS) to incorporate strain-level resolution, 
has the potential to reveal key functional links to 
human health and disease.

Figure 6: Strain-informed, microbiome-wide association study on inflammatory 
bowel disease phenotypes across 234 species and 131,470 genes. For each 
species, genes are assigned across HMP2 study subjects based on whether 
they posses a strain inferred to encode that gene. Genes with between 25% 
and 75% prevalence across subjects were tested for enrichment in ulcerative 
colitis, Crohn’s disease, or non-IBD control patients (Fisher’s exact test). This 
volcano plot, visualized as a 2D-histogram, summarizes the distribution of 
effect sizes (log odds ratio) and P-values across all gene-by-diagnosis pairs. A 
blue arrow indicates the two most significant hits, both genes in Bacteroides 
xylanisolvens. Notably, one of these is annotated as “Carbohydrate esterase, 
sialic acid-specific acetylesterase”.
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performing better, and counts below the diagonal to the alternative method performing better. F1 is the harmonic mean of 
precision and recall; based on this balanced index, StrainPGC significantly
outperforms the three alternatives (Wilcoxon signed-rank test, not shown) in
predicting the true gene content of strains in the synthetic community.
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Clustering by SNP Profiles

Gene Content Dissimilarity

A B

content are both very similar, and larger dark patches demonstrate higher-level population structure. StrainPGC genomes recapitulate the known diversity of
E. coli strains based on reference genomes, with one or more newly inferred strains found in most of the intraspecific sub-groups. (B) Scatter plot showing 
the minimum SNP dissimilarity to a reference sequence (X-axis), as well as the corresponding gene content dissimilarity (Y-axis). Points correspond to an 
individual reference or StrainPGC-inferred genome, and are colored to indicate their source. Lines depict a multiple linear regression predicting gene content 
dissimilarity based on SNP dissimilarity (log transformed in the regression), along with terms for genome source and the interaction between the two. Given 
the generally higher SNP dissimilarity between StrainPGC genomes and existing references, it is not surprising that their gene content also differs markedly. 
That novel strains were identified with highly divergent gene content, even in a species as well-studied as E. coli, emphasizes the critical importance of 
strain-level understanding in the analysis of microbiomes.

log2(Odds Ratio)A Median SNP profile Concordance (r)B

Markers indicate the significance of this result (Mann-Whitney U test) (A, B) The “No Annotation” category indicates genes that are either not annotated by 
EggNOG mapper or annotated but without a COG category. Markers indicate significance level (*: p<0.05, **: p<1e-3, ***: p<1e-5).
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