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• Intraspecific variation is widespread and functionally important in microbial systems 
including the human microbiome.

• Standard methods to study communities often do not measure this level of 
taxonomic detail. Nonetheless, metagenomic sequence data in principle encodes 
rich, strain-level information.

• Here we refer to the observed counts of various alleles at polymorphic positions as a 
“metagenotype”. Both read mapping and exact K-mer based approaches have been 
developed to process metagenomic reads into metagenotypes for species of 
interest1,2,3,4.

• The expected proportions of allele counts across sites can be approximated as a 
linear combination of unmeasured strain proportions and their respective
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Challenges & Lessons Learned

• The Pyro probabilistic programming 
framework9 makes model development and 
MAP estimation easy and fast. Scalability on 
GPUs is an added bonus.

Open problems
• Strain number misspecification negatively 

impacts inference. Attempts to induce 
sparsity with the Dirichlet prior on 𝜌 seems to 
be ineffective.

• It is not clear how to best incorporate 
parameter uncertainty. Full Bayesian 
inference is challenging given the multi-
modal posterior, and attempts to apply 
variational methods have had numerical 
problems.
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Inference of genotypes and their relative abundances using this 
model are fast and accurate in simulations, even with challenging 
data: low-coverage, noisy, heavily admixed, and high strain diversity, 
reflecting a frequent reality of metagenomic libraries.

We measured performance based on three metrics: (1) genotype 
error (mean abundance weighted squared deviation from ground 
truth with adjustment for “fuzziness”), (2) compositional error (RMSE 
of all pairwise sample Bray-Curtis dissimilarities normalized to the 
expected value), and (3) total runtime to parameter convergence.

Increasing the number of samples (N), the number of genome 
positions (G), or the mean sample coverage (𝜇*) all generally improve 
model accuracy with approximately linear increases in runtime.

may yield insights into the population structure and 
evolution of strains without the need for cultured 
representatives, and can be carried out for any 
species where metagenotype data can be collected.

These inferences can also inform analysis of microbial 
biogeography. Across all of the samples combined 
here1, certain Escherichia groups were more likely to 
be dominant within specific studies, and have visibly 
different dominance rates across four continents. 
Nonetheless, all high incidence strains are dominant 
in at least one sample in the majority of included 
studies.

In a study of fecal microbiome transplant (FMT) as a treatment for ulcerative colitis, we found that 
genotypes were quickly and stably transferred from donors to patients.

We went on to fit our model to a large corpus of publicly available human microbiome metagenomes 
previously processed by GT-PRO. For the genus Escherichia, 9540 samples had sufficient coverage to be 
included, and we subsampled 1000 SNP positions (major allele frequency of <90%). Fitting the model 
took 185 seconds on a GPU. 

Inferred genotypes can be filtered using a variety of metrics (such as estimated abundance, genotype 
entropy, source sample error, etc.), and further consolidated into clusters of highly similar genotypes. 

In our analysis of Escherichia we identified 232 distinct genotype clusters. Based on rarefaction curves 
and the Chao1 richness estimator, our analysis suggests that we may have cataloged a majority of the 
Escherichia genotype diversity in the surveyed host population.

The most recent version of 
this poster is available at:

https://byronjsmith.com/probgen2021_poster.pdf

This is version:
2021-04-12a

Linkage disequilibrium was estimated for all locus pairs 
across the 232 inferred genotype clusters. Mean LD over all 
pairs was 0.022. LD was stronger for locus pairs closer 
together in the reference genome for the species. For loci 
within 100 bases of each other, mean LD was 0.217, and 
between 100 and 200 bases it was 0.143, indicating that 
this trend was not an artifact of nearby loci being found on 
the same read.

This rapid decay of statistical linkage with linear distance 
may reflect extensive genome recombination between 
populations of Escherichia, a phenomenon that has been 
previously described using isolate genomes7,8.

Our model produces plausible and 
interpretable results when fit to 
metagenotype data produced by GT-
PRO1.

To demonstrate the potential value of genotype inferences for evolutionary studies, we re-fit metagenotype data for 13394 SNP 
positions with major allele frequencies of <90%. Conditioning on parameters estimated in the previous run from subsampled data, we 
fit genotypes by iterating over all positions in blocks of 1000 positions. This process took an additional 360 seconds.
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We constructed a detailed, generative model for metagenotype data across bi-allelic sites, 
which extends the simple multiplicative model described above. Importantly, genotypes in 
our model need not be purely the reference or alternative allele, but instead are “fuzzy”
varying between 0.0 (entirely reference) and 1.0 (entirely alternative). Unlike similar, 
previously published approaches5,6, this makes parameters in our model fully differentiable, 
and allows us to harness gradient-based optimization methods for maximum a posteriori 
(MAP) estimation. Of note, our approach models allele counts as over-dispersed compared to 
a binomial process, and also allows for the possibility that some strains are missing genome 
positions.

Special thanks to Zhou Jason Shi for 
the contribution of and extensive 
discussion about GT-PRO 
metagenotype data.

This work was supported 
by an NIH T32 training 
grant 5T32DK007007.

• Some nuisance 
parameters (e.g. 𝛼) 
collapse to biologically 
implausible values even 
with strong priors. It is 
not yet apparent how this 
affects estimates.

genotypes, suggesting that these latent parameters of interest 
may be estimated using methods related to matrix factorization

• However, existing tools5,6 to do so 
have not yet been widely 
adopted, due in part to 
computational limitations and 
biological deviations from this 
simple model.
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