Unzipping the metagenome: strain-level discovery in the gut microbiome

Byron J. Smith

Bhatt Lab Computational Subgroup 2024-09-10

First Thing: Thank You!

Pollard Lab

Katie Pollard Veronika Dubinkina and *everyone*

Collaborators

Archit Verma Dylan Cable

Funders

Gladstone Institutes NIH CZ Biohub UC Noyce Initiative Helmsley Charitable Trust

Introduction:

The gut microbiome and shotgun metagenomics

The Gut Microbiome is Challenging

- Enormous number of species
- **Highly dynamic across people and time**
- Very hard to study in the lab
- **● Strains within species have different gene content and functional potential**

Bacterial genomes are key to understanding strain diversity

Phage encoded antibiotic resistance

genes

Metagenomic sequencing surveys all genomes

Short-read, shotgun metagenomes enable modern microbiome science

Requirements:

- strain-resolved genome sequences
- capture lowabundance organisms
- longitudinal designs and lots of samples
- long sequences

 \triangleright high accuracy

 \triangleright very deep sequencing

➢ …

Turning short reads into long sequences

…GGTAGAGCGTGGGACGTAGGGTTAACCTTAGAAAGCTAGAAAACCGCGCGCCCT…

Problem: Closely related strains make read-chaining ambiguous

Can be represented as a graph of sequences linked by their overlaps

Can be represented as a graph of sequences linked by their overlaps

(This problem also comes up for mRNA alternative splicing)

And real metagenomes are **very** complex

Real genomic sequences are paths on the graph

Real genomic sequences are paths on the graph

Real genomic sequences are paths on the graph

Lots of incorrect paths also exist… *How do we avoid these?*

Lots of incorrect paths also exist… *How do we avoid these?*

Standard Tools: Filter out low-abundance sequences

Lots of incorrect paths also exist… *How do we avoid these?*

Filter out low-abundance sequences Fragment the graph when it's ambiguous

Standard Tools:

StrainZip:

Untangling the metagenome graph

How can we recover long, accurate genome sequences from short reads?

How can we recover long, accurate genome sequences from short reads?

Focus on just one junction at a time

Focus on just one junction at a time

Focus on just one junction at a time

Focus on just one junction at a time Select local paths

Sparse linear regression across multiple samples

Focus on just one junction at a time Select local paths Unzip

Focus on just one junction at a time Select local paths Unzip Repeat

Focus on just one junction at a time Select local paths Unzip Repeat

Ą \longrightarrow \longrightarrow \longrightarrow \longrightarrow

Focus on just one junction at a time Select local paths Unzip Repeat

SEP

Strain-resolved discovery

Performance benchmarked on a complex, synthetic community

 \cdots

Antibiotic resistance genes are widespread in the gut microbiome

Detection can inform treatment

Antibiotic resistance genes are widespread in the gut microbiome

Detection can inform treatment

Antibiotic resistance genes are widespread in the gut microbiome

capsid / tail proteins

Caudoviricetes sp. A

sp. B

- **Detection can** inform treatment
- Can be carried in phage genomes
- Long sequence fragments provide useful information

Antibiotic resistance genes are widespread in the gut microbiome

- **Detection can** inform treatment
- Can be carried in phage genomes
- Long sequence fragments provide useful information

Complex Metagenome Graphs

StrainZip Iteratively Unzips Junctions

Strain-Resolved Metagenomics | Antibiotic Resistance Potential of Phage

Rewind: I also care about depth quantification

Assembly and depth quantification are complementary

Closely related sequences are a major challenge for alignment

Shared sequences mean reads map ambiguously

Quick intro to de Bruijn graphs

Read #1 …CGTACCTGGATTAC… **Assembly …CGTACCTGGATTACTTAA…**

Read #2 CCTGGATTACTTAA…

De Bruijn graphs

Motivation: **Assembly** - stitching together longer sequences using overlapping portions

Fragment reads into k-mers

 $(x2)$

Collect unique k-mers

 CGTA GTAC TACC ACCT CCTG CTGG TGGA GGAT GATT ATTA TTAC TACT ACTT CTTA TTAA

Identify k-mer pairs where (k-1) suffix on one is same as other's prefix

 CGTA GTAC TACC ACCT CCTG CTGG TGGA GGAT GATT ATTA TTAC TACT ACTT CTTA TTAA

Draw edge

CGTA GTAC TACC ACCT CCTG CTGG TGGA GGAT GATT ATTA TTAC TACT ACTT CTTA TTAA

Linear paths (unitigs) are assembled sequence

 $CGTA \rightarrow GTAC \rightarrow TACC \rightarrow ACCT \rightarrow CCTG \rightarrow CTGG \rightarrow TGGA \rightarrow GGAT \rightarrow GATT \rightarrow ATTA \rightarrow TTAC \rightarrow TACT \rightarrow ACTT \rightarrow CTTA \rightarrow TTAA$

Mutations / errors introduce new k-mers

Same edge-drawing process

 CTGG TGGA GGAT GATT

 CGTA GTAC TACC ACCT CCTG ACCT **ATTA TTAC TACT ACTT CTTA TTAA**

 CTGC TGCA GCAT CATT

Same edge-drawing process

 CTGC TGCA GCAT CATT

But now some k-mers have multiple edges


```
This introduces a "bubble"
```


The two sides of the bubble reflect the observed diversity

Again we extract unitigs, but now they're shorter, fragmented

Sequences are walks along the graph; can align reads without worrying about fragmentation

Read #1 …CGTACTGGATTAC

Read #2 CCTGCATTACTTAA…

Alternatively: Exact k-mer counting

Alternatively: Exact k-mer counting

Much faster than read alignment

Every k-mer in the sample is in the dBG, by construction

Alternatively: Exact k-mer counting

Much faster than read alignment

Every k-mer in the sample is in the dBG, by construction

No ambiguity about what is being quantified: it's unitigs

KEY IDEA: The expected depth of a k-mer is the sum of the paths that include that k-mer

We can enumerate all possible paths on our assembly graph

We can enumerate all possible paths on our assembly graph

…but this grows exponentially with graph complexity

KEY IDEA: A single "junction" is the minimum unit of deconvolution

KEY IDEA: A single "junction" is the minimum unit of deconvolution

KEY IDEA: A single "junction" is the minimum unit of deconvolution

Focus on just one junction at a time Quantify local paths

Linear regression
Focus on just one junction at a time Select (and quantify) local paths

Linear regression Model selection

Focus on just one junction at a time Select (and quantify) local paths

Linear regression Model selection Across multiple samples

Drop paths with no depth in any sample

Used statistical linkage to resolve ambiguity about which of possible paths are "real"

Resolve ambiguity, longer linear sequences

Can "unzip" this unitig into two paths

Resolve ambiguity, longer linear sequences

Newly split unitigs already have depths estimated across samples

$\begin{picture}(150,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($ $\rightarrow \Box \rightarrow \Box \rightarrow \Box \rightarrow$

StrainZip

Assembly Graph Deconvolution for Quantification of Strain-Specific Sequences across Metagenomes

<https://github.com/bsmith89/StrainZip>

Benchmarking

Closely related strains and species result in bubbles and more complex topologies in the assembly graph

Path lengths increase over successive rounds of deconvolution

Deconvolution recovers longer, strain-specific sequences

…including lower-abundance strains …and species **…accurately**

> *Veillonella parvulla* Strain A (17,229 bp; 100% match)

Result: both paths, and path depths across samples (without read mapping)

≈

Estimated unitig depths closely match observed depths

$$
\mathsf{Predicted} \longrightarrow
$$

Observed

Sample

Estimated unitig depths closely match observed depths

Path depths match reference-based strain depth estimates

Clustering paths by depth combines multiple sequences from the same strain

Path

Recovers Closely Related Genomes | Enables Strain-Resolved Metagenomics

